INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA

Detalhes bibliográficos
Autor(a) principal: Fonseca, Jussara Aparecida da
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional Universidade Franciscana
Texto Completo: http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/875
Resumo: This work presents the results of a research that aimed to analyze how undergraduate mathematics students understand metric relations in spherical triangles from Euclidean geometry perspective. In a first study, we found elements that justify our investigation, verifying the importance of the knowledge on non-Euclidean geometries for the understanding of Euclidean geometry itself. This way, we focused mainly in its development in initial teacher training courses. The qualitative and exploratory research was based on the theoretical and methodological assumptions from the mathematical investigations of João Pedro da Ponte and the categories of understanding by Richard Skemp: relational and instrumental. In the mathematical investigations, we researched the notion of task and the subsidies for the organization of our research and teaching sequence, and the types of understanding, elements that would allow us to verify those presented by the participants. For this purpose, tasks were organized in exploratory activities on the Euclidean plane, on the spherical surface and in spherical triangles. Those carried out in the plane aimed to recall some concepts of Euclidean geometry in order to later verify their existence on the spherical surface and, finally, the tasks involving spherical triangles focused on obtaining some of their relationships and properties. Besides these, evaluation activities were used in order to analyze the participants' understanding of the topics developed. Twelve undergraduate students from different semesters who major in mathematics participated in the investigation at Instituto Federal Farroupilha – Alegrete Campus. The results obtained from the analysis of the written records from the participants, which were based on criteria contributed to the mathematical investigations and types of understanding, showed aspects of the relational one on topics of spherical geometry, especially metric relations in spherical triangles. The topics worked on enable the participants to have another view on the development of both geometric knowledge and mathematics itself, since from them they glimpsed the existence of another different geometric model, but as consistent as that of Euclidean geometry. Moreover, the results also pointed to the need to create intermediate levels of understanding, in relation to those described by Skemp: almost relational understanding and almost instrumental understanding.
id UFN-1_f4f79683e33cac1aec8253b65121dffa
oai_identifier_str oai:tede.universidadefranciscana.edu.br:UFN-BDTD/875
network_acronym_str UFN-1
network_name_str Repositório Institucional Universidade Franciscana
repository_id_str http://www.tede.universidadefranciscana.edu.br:8080/oai/request
spelling Leivas, José Carlos PintoSoares, Maria Tereza CarneiroVecchia, Rodrigo DallaBisognin, VanildeNunes, Janilse FernandesFonseca, Jussara Aparecida da2020-06-22T11:31:21Z2020-03-26Fonseca, Jussara Aparecida da. INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA. 2020. 308f. Tese( Programa de Pós-Graduação em Ensino de Ciências e Matemática) - Universidade Franciscana, Santa Maria - RS .http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/875This work presents the results of a research that aimed to analyze how undergraduate mathematics students understand metric relations in spherical triangles from Euclidean geometry perspective. In a first study, we found elements that justify our investigation, verifying the importance of the knowledge on non-Euclidean geometries for the understanding of Euclidean geometry itself. This way, we focused mainly in its development in initial teacher training courses. The qualitative and exploratory research was based on the theoretical and methodological assumptions from the mathematical investigations of João Pedro da Ponte and the categories of understanding by Richard Skemp: relational and instrumental. In the mathematical investigations, we researched the notion of task and the subsidies for the organization of our research and teaching sequence, and the types of understanding, elements that would allow us to verify those presented by the participants. For this purpose, tasks were organized in exploratory activities on the Euclidean plane, on the spherical surface and in spherical triangles. Those carried out in the plane aimed to recall some concepts of Euclidean geometry in order to later verify their existence on the spherical surface and, finally, the tasks involving spherical triangles focused on obtaining some of their relationships and properties. Besides these, evaluation activities were used in order to analyze the participants' understanding of the topics developed. Twelve undergraduate students from different semesters who major in mathematics participated in the investigation at Instituto Federal Farroupilha – Alegrete Campus. The results obtained from the analysis of the written records from the participants, which were based on criteria contributed to the mathematical investigations and types of understanding, showed aspects of the relational one on topics of spherical geometry, especially metric relations in spherical triangles. The topics worked on enable the participants to have another view on the development of both geometric knowledge and mathematics itself, since from them they glimpsed the existence of another different geometric model, but as consistent as that of Euclidean geometry. Moreover, the results also pointed to the need to create intermediate levels of understanding, in relation to those described by Skemp: almost relational understanding and almost instrumental understanding.No presente trabalho são apresentados os resultados de uma pesquisa, cujo objetivo foi analisar como alunos de um curso de licenciatura em matemática compreendem relações métricas em triângulos esféricos, a partir de relações na geometria euclidiana. Em um estudo inicial, encontramos elementos que justificaram nosso trabalho, ao verificar a importância do conhecimento de geometrias não-euclidianas para a compreensão da própria geometria euclidiana, em particular, no que tange ao seu desenvolvimento em cursos de formação inicial de professores. A pesquisa, de cunho qualitativo e exploratório, teve por fundamentação teórico-metodológica os pressupostos das investigações matemáticas de João Pedro da Ponte e as categorias de compreensão de Richard Skemp: compreensão relacional e compreensão instrumental. Buscamos, nas investigações matemáticas, a noção de tarefa e os subsídios para a organização de nossa pesquisa e da sequência de ensino, e nos tipos de compreensão, elementos que permitissem verificar aquela(s) apresentada(s) pelos participantes. Neste intuito, foram realizadas tarefas organizadas em atividades exploratórias no plano euclidiano, na superfície esférica e em triângulos esféricos. Aquelas realizadas no plano, visavam recordar alguns conceitos da geometria euclidiana, de modo a, posteriormente, verificar sua existência sobre a superfície esférica e, por fim, as tarefas envolvendo triângulos esféricos focaram-se na obtenção de algumas de suas relações e propriedades. Além dessas, foram utilizadas atividades avaliativas a fim de analisar a compreensão dos participantes quando aos tópicos desenvolvidos. Participaram da investigação doze alunos, de diferentes semestres, do curso de licenciatura em matemática do Instituto Federal Farroupilha – campus Alegrete. Os resultados obtidos, a partir da análise dos registros escritos dos participantes, com base em critérios aportados nas investigações matemáticas e nos tipos de compreensão, evidenciaram aspectos da compreensão relacional de tópicos da geometria esférica, em especial, de relações métricas em triângulos esféricos. Os tópicos trabalhados possibilitaram aos participantes outra visão sobre o desenvolvimento tanto do conhecimento geométrico quanto da própria matemática, pois a partir deles vislumbraram a existência de outro modelo geométrico, diferente, mas tão consistente, quanto o da geometria euclidiana. Do mais, os resultados também apontaram para a necessidade de criação de níveis intermediários de compreensão, em relação aos descritos por Skemp: compreensão quase relacional e compreensão quase instrumental.Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2020-06-22T11:31:21Z No. of bitstreams: 2 Tese_Jussara Fonseca.pdf: 3380541 bytes, checksum: 04ea8796f96566841899c433a4537091 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2020-06-22T11:31:21Z (GMT). No. of bitstreams: 2 Tese_Jussara Fonseca.pdf: 3380541 bytes, checksum: 04ea8796f96566841899c433a4537091 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2020-03-26application/pdfhttp://www.tede.universidadefranciscana.edu.br:8080/retrieve/6183/Tese_Jussara%20Fonseca.pdf.jpgporUniversidade FranciscanaPrograma de Pós-Graduação em Ensino de Ciências e MatemáticaUFNBrasilEnsino de Ciências e Matemáticahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTriângulos esféricos. Compreensão relacional e instrumental. Investigações matemáticas. Ensino Superior.Spherical triangles. Relational and instrumental understanding. Mathematical investigations. Higher Education.Ciências e MatemáticaINVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICAinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional Universidade Franciscanainstname:Universidade Franciscana (UFN)instacron:UFNTHUMBNAILTese_Jussara Fonseca.pdf.jpgTese_Jussara Fonseca.pdf.jpgimage/jpeg3649http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/7/Tese_Jussara+Fonseca.pdf.jpgd8182957358c0b44ee8595f79feced50MD57TEXTTese_Jussara Fonseca.pdf.txtTese_Jussara Fonseca.pdf.txttext/plain704731http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/6/Tese_Jussara+Fonseca.pdf.txt72297a73ebe834d4415cd65e794ed53cMD56ORIGINALTese_Jussara Fonseca.pdfTese_Jussara Fonseca.pdfapplication/pdf3380541http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/5/Tese_Jussara+Fonseca.pdf04ea8796f96566841899c433a4537091MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8310http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/1/license.txt7dc66ddb96829ff34b56b1a92c851bcdMD51UFN-BDTD/8752020-06-23 01:01:43.225oai:tede.universidadefranciscana.edu.br:UFN-BDTD/875RXN0ZSB0cmFiYWxobyBzZXLDoSBsaWNlbmNpYWRvIHNvYiBhIExpY2Vuw6dhIEF0cmlidWnDp8Ojby1Ow6NvQ29tZXJjaWFsLVNlbURlcml2YcOnw7VlcyA0LjAgSW50ZXJuYWNpb25hbCBDcmVhdGl2ZSBDb21tb25zLiBQYXJhIHZpc3VhbGl6YXIgdW1hIGPDs3BpYSBkZXN0YSBsaWNlbsOnYSwgdmlzaXRlIGh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8gb3UgbWFuZGUgdW1hIGNhcnRhIHBhcmEgQ3JlYXRpdmUgQ29tbW9ucywgUE8gQm94IDE4NjYsIE1vdW50YWluIFZpZXcsIENBIDk0MDQyLCBVU0EuCg==Repositório de Publicaçõeshttp://www.tede.universidadefranciscana.edu.br:8080/http://www.tede.universidadefranciscana.edu.br:8080/oai/requestopendoar:2020-06-23T04:01:43Repositório Institucional Universidade Franciscana - Universidade Franciscana (UFN)false
dc.title.por.fl_str_mv INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA
title INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA
spellingShingle INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA
Fonseca, Jussara Aparecida da
Triângulos esféricos. Compreensão relacional e instrumental. Investigações matemáticas. Ensino Superior.
Spherical triangles. Relational and instrumental understanding. Mathematical investigations. Higher Education.
Ciências e Matemática
title_short INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA
title_full INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA
title_fullStr INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA
title_full_unstemmed INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA
title_sort INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA
author Fonseca, Jussara Aparecida da
author_facet Fonseca, Jussara Aparecida da
author_role author
dc.contributor.advisor1.fl_str_mv Leivas, José Carlos Pinto
dc.contributor.referee1.fl_str_mv Soares, Maria Tereza Carneiro
dc.contributor.referee2.fl_str_mv Vecchia, Rodrigo Dalla
dc.contributor.referee3.fl_str_mv Bisognin, Vanilde
dc.contributor.referee4.fl_str_mv Nunes, Janilse Fernandes
dc.contributor.author.fl_str_mv Fonseca, Jussara Aparecida da
contributor_str_mv Leivas, José Carlos Pinto
Soares, Maria Tereza Carneiro
Vecchia, Rodrigo Dalla
Bisognin, Vanilde
Nunes, Janilse Fernandes
dc.subject.por.fl_str_mv Triângulos esféricos. Compreensão relacional e instrumental. Investigações matemáticas. Ensino Superior.
topic Triângulos esféricos. Compreensão relacional e instrumental. Investigações matemáticas. Ensino Superior.
Spherical triangles. Relational and instrumental understanding. Mathematical investigations. Higher Education.
Ciências e Matemática
dc.subject.eng.fl_str_mv Spherical triangles. Relational and instrumental understanding. Mathematical investigations. Higher Education.
dc.subject.cnpq.fl_str_mv Ciências e Matemática
description This work presents the results of a research that aimed to analyze how undergraduate mathematics students understand metric relations in spherical triangles from Euclidean geometry perspective. In a first study, we found elements that justify our investigation, verifying the importance of the knowledge on non-Euclidean geometries for the understanding of Euclidean geometry itself. This way, we focused mainly in its development in initial teacher training courses. The qualitative and exploratory research was based on the theoretical and methodological assumptions from the mathematical investigations of João Pedro da Ponte and the categories of understanding by Richard Skemp: relational and instrumental. In the mathematical investigations, we researched the notion of task and the subsidies for the organization of our research and teaching sequence, and the types of understanding, elements that would allow us to verify those presented by the participants. For this purpose, tasks were organized in exploratory activities on the Euclidean plane, on the spherical surface and in spherical triangles. Those carried out in the plane aimed to recall some concepts of Euclidean geometry in order to later verify their existence on the spherical surface and, finally, the tasks involving spherical triangles focused on obtaining some of their relationships and properties. Besides these, evaluation activities were used in order to analyze the participants' understanding of the topics developed. Twelve undergraduate students from different semesters who major in mathematics participated in the investigation at Instituto Federal Farroupilha – Alegrete Campus. The results obtained from the analysis of the written records from the participants, which were based on criteria contributed to the mathematical investigations and types of understanding, showed aspects of the relational one on topics of spherical geometry, especially metric relations in spherical triangles. The topics worked on enable the participants to have another view on the development of both geometric knowledge and mathematics itself, since from them they glimpsed the existence of another different geometric model, but as consistent as that of Euclidean geometry. Moreover, the results also pointed to the need to create intermediate levels of understanding, in relation to those described by Skemp: almost relational understanding and almost instrumental understanding.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-06-22T11:31:21Z
dc.date.issued.fl_str_mv 2020-03-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Fonseca, Jussara Aparecida da. INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA. 2020. 308f. Tese( Programa de Pós-Graduação em Ensino de Ciências e Matemática) - Universidade Franciscana, Santa Maria - RS .
dc.identifier.uri.fl_str_mv http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/875
identifier_str_mv Fonseca, Jussara Aparecida da. INVESTIGAÇÃO DE ASPECTOS DA COMPREENSÃO RELACIONAL E DA INSTRUMENTAL EM GEOMETRIA ESFÉRICA. 2020. 308f. Tese( Programa de Pós-Graduação em Ensino de Ciências e Matemática) - Universidade Franciscana, Santa Maria - RS .
url http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/875
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Franciscana
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ensino de Ciências e Matemática
dc.publisher.initials.fl_str_mv UFN
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Ensino de Ciências e Matemática
publisher.none.fl_str_mv Universidade Franciscana
dc.source.none.fl_str_mv reponame:Repositório Institucional Universidade Franciscana
instname:Universidade Franciscana (UFN)
instacron:UFN
instname_str Universidade Franciscana (UFN)
instacron_str UFN
institution UFN
reponame_str Repositório Institucional Universidade Franciscana
collection Repositório Institucional Universidade Franciscana
bitstream.url.fl_str_mv http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/7/Tese_Jussara+Fonseca.pdf.jpg
http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/6/Tese_Jussara+Fonseca.pdf.txt
http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/5/Tese_Jussara+Fonseca.pdf
http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/2/license_url
http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/3/license_text
http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/4/license_rdf
http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/875/1/license.txt
bitstream.checksum.fl_str_mv d8182957358c0b44ee8595f79feced50
72297a73ebe834d4415cd65e794ed53c
04ea8796f96566841899c433a4537091
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
7dc66ddb96829ff34b56b1a92c851bcd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional Universidade Franciscana - Universidade Franciscana (UFN)
repository.mail.fl_str_mv
_version_ 1809269402988707840