Artificial neural networks to prediction fuel rate in the blast furnace operation.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/10852 |
Resumo: | This paper proposes the use of artificial neural networks for the prediction of fuel consumption in the blast furnace. For this purpose, a dataset of 270 records, with 19 input variables were considered, based on the historical data of operation from the years 2014 to 2017 of a blast furnace of a Brazilian steel mill, and it was verified that model presented good results with correlation coefficient of 0.837, consisting of an input layer with 19 neurons, intermediate layer with 19 neurons and output layer with 1 neuron. |
id |
UFOP_43924cef9ad3fbc4c103f760d752d955 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/10852 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Artificial neural networks to prediction fuel rate in the blast furnace operation.ModellingThis paper proposes the use of artificial neural networks for the prediction of fuel consumption in the blast furnace. For this purpose, a dataset of 270 records, with 19 input variables were considered, based on the historical data of operation from the years 2014 to 2017 of a blast furnace of a Brazilian steel mill, and it was verified that model presented good results with correlation coefficient of 0.837, consisting of an input layer with 19 neurons, intermediate layer with 19 neurons and output layer with 1 neuron.2019-03-28T15:52:42Z2019-03-28T15:52:42Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCARVALHO, L. de A.; ASSIS, P. S. Artificial neural networks to prediction fuel rate in the blast furnace operation. Indian Journal of Applied Research, v. 8, p. 431-432, 2018. Disponível em: <https://wwjournals.com/index.php/ijar/article/view/5680>. Acesso em: 15 fev. 2019.2249555Xhttp://www.repositorio.ufop.br/handle/123456789/10852This work is licensed under a Creative Commons Attribution 4.0 International License. Fonte: Indian Journal of Applied Research <https://www.worldwidejournals.com/indian-journal-of-applied-research-(IJAR)/> acesso em: 18 fev. 2019.info:eu-repo/semantics/openAccessCarvalho, Leonard de AraújoAssis, Paulo Santosengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2019-03-28T15:52:42Zoai:repositorio.ufop.br:123456789/10852Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332019-03-28T15:52:42Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Artificial neural networks to prediction fuel rate in the blast furnace operation. |
title |
Artificial neural networks to prediction fuel rate in the blast furnace operation. |
spellingShingle |
Artificial neural networks to prediction fuel rate in the blast furnace operation. Carvalho, Leonard de Araújo Modelling |
title_short |
Artificial neural networks to prediction fuel rate in the blast furnace operation. |
title_full |
Artificial neural networks to prediction fuel rate in the blast furnace operation. |
title_fullStr |
Artificial neural networks to prediction fuel rate in the blast furnace operation. |
title_full_unstemmed |
Artificial neural networks to prediction fuel rate in the blast furnace operation. |
title_sort |
Artificial neural networks to prediction fuel rate in the blast furnace operation. |
author |
Carvalho, Leonard de Araújo |
author_facet |
Carvalho, Leonard de Araújo Assis, Paulo Santos |
author_role |
author |
author2 |
Assis, Paulo Santos |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Carvalho, Leonard de Araújo Assis, Paulo Santos |
dc.subject.por.fl_str_mv |
Modelling |
topic |
Modelling |
description |
This paper proposes the use of artificial neural networks for the prediction of fuel consumption in the blast furnace. For this purpose, a dataset of 270 records, with 19 input variables were considered, based on the historical data of operation from the years 2014 to 2017 of a blast furnace of a Brazilian steel mill, and it was verified that model presented good results with correlation coefficient of 0.837, consisting of an input layer with 19 neurons, intermediate layer with 19 neurons and output layer with 1 neuron. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2019-03-28T15:52:42Z 2019-03-28T15:52:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CARVALHO, L. de A.; ASSIS, P. S. Artificial neural networks to prediction fuel rate in the blast furnace operation. Indian Journal of Applied Research, v. 8, p. 431-432, 2018. Disponível em: <https://wwjournals.com/index.php/ijar/article/view/5680>. Acesso em: 15 fev. 2019. 2249555X http://www.repositorio.ufop.br/handle/123456789/10852 |
identifier_str_mv |
CARVALHO, L. de A.; ASSIS, P. S. Artificial neural networks to prediction fuel rate in the blast furnace operation. Indian Journal of Applied Research, v. 8, p. 431-432, 2018. Disponível em: <https://wwjournals.com/index.php/ijar/article/view/5680>. Acesso em: 15 fev. 2019. 2249555X |
url |
http://www.repositorio.ufop.br/handle/123456789/10852 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002864718512128 |