Sobre a desigualdade de Kahane-Salem-Zygmund e resultados afins
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/30471 |
Resumo: | Neste trabalho, revisitamos e exploramos os seguintes resultados clássicos: a desigualdade de Kahane-Salem-Zygmund (por simplicidade, KSZ), o jogo das luzes desbalanceadas de Gale-Berlekamp e o Teorema de Dvoretzky-Rogers. A princípio, apresentamos uma versão multilinear estendida da KSZ, com a qual obtivemos as estimativas assintóticas ótimas para os expoentes em casos não contemplados pelas versões anteriores. Em particular, provamos que uma conjectura proposta por Albuquerque e Rezende é falsa. Em seguida, inspirados por um antigo resultado de Bohnenblust e Hille, investigamos como certas matrizes de escalares complexos podem ser usadas para substituir os coeficientes ±1, para obter variantes da KSZ com melhores propriedades. Nessa direção, propusemos uma versão contínua para o famoso jogo das luzes desbalanceadas de Gale-Berlekamp, com boas estimativas. Finalmente, usando a mesma classe de matrizes, obtivemos uma prova construtiva para o Teorema de Dvoretzky-Rogers em espaços de sequências com escalares complexos. Mais precisamente, dado p ∈ [1, 2], fornecemos exemplos de uma série (x(j))∞j=1 incondicionalmente somável em lp(C) com P∞j=1 kx(j)k2−ε = ∞, para todo ε > 0. Usando ainda o "Sistema de Walsh", apresentamos uma construção similar para o caso de espaços de sequências com escalares reais. |
id |
UFPB-2_fd1c52f8e93dc027364c1c8d7f5c70bf |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/30471 |
network_acronym_str |
UFPB-2 |
network_name_str |
Repositório Institucional da UFPB |
repository_id_str |
2546 |
spelling |
2024-06-21T13:27:30Z2023-10-102024-06-21T13:27:30Z2023-04-20https://repositorio.ufpb.br/jspui/handle/123456789/30471Neste trabalho, revisitamos e exploramos os seguintes resultados clássicos: a desigualdade de Kahane-Salem-Zygmund (por simplicidade, KSZ), o jogo das luzes desbalanceadas de Gale-Berlekamp e o Teorema de Dvoretzky-Rogers. A princípio, apresentamos uma versão multilinear estendida da KSZ, com a qual obtivemos as estimativas assintóticas ótimas para os expoentes em casos não contemplados pelas versões anteriores. Em particular, provamos que uma conjectura proposta por Albuquerque e Rezende é falsa. Em seguida, inspirados por um antigo resultado de Bohnenblust e Hille, investigamos como certas matrizes de escalares complexos podem ser usadas para substituir os coeficientes ±1, para obter variantes da KSZ com melhores propriedades. Nessa direção, propusemos uma versão contínua para o famoso jogo das luzes desbalanceadas de Gale-Berlekamp, com boas estimativas. Finalmente, usando a mesma classe de matrizes, obtivemos uma prova construtiva para o Teorema de Dvoretzky-Rogers em espaços de sequências com escalares complexos. Mais precisamente, dado p ∈ [1, 2], fornecemos exemplos de uma série (x(j))∞j=1 incondicionalmente somável em lp(C) com P∞j=1 kx(j)k2−ε = ∞, para todo ε > 0. Usando ainda o "Sistema de Walsh", apresentamos uma construção similar para o caso de espaços de sequências com escalares reais.In this work, we explore some classic results that are at the intersection of probability theory and functional analysis, namely: the Kahane-Salem-Zygmund inequality (for simplicity, KSZ), the Gale-Berlekamp unbalanced light game and the Dvoretzky-Rogers Theorem. Our investigation took place, mainly, from the analytical point of view. At first, we present an extended multilinear version of the KSZ, with which we obtain optimal asymptotic estimates for the exponents in cases not covered by previous versions. In particular, we prove that a conjecture proposed by Albuquerque and Rezende is false. Then, inspired by an old result by Bohnenblust and Hille, we investigate how certain matrices of complex scalars can be used to replace the coeficients ±1, to obtain KSZ variants with better properties. In this direction, we propose a continuous version for the famous game of unbalanced lights by Gale-Berlekamp, with good estimates. Finally, using the same class of matrices, we obtained a constructive proof for the Dvoretzky-Rogers Theorem on sequence spaces with complex scalars. More precisely, given p ∈ [1,∞], we provide examples of a series (x(j))∞j=1 unconditionally summable in lp(C) with P∞j=1 kx (j)k2−ε = ∞, for all ε > 0. Still using the "Walsh System", we obtained a similar construction for the case of sequence spaces with real scalars.Submitted by Marília Cosmos (marilia@biblioteca.ufpb.br) on 2024-06-21T13:27:30Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) JanielyMariaDaSilva_Tese.pdf: 1664647 bytes, checksum: 048ae03c92096513dd4be4afaa8fe70a (MD5)Made available in DSpace on 2024-06-21T13:27:30Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) JanielyMariaDaSilva_Tese.pdf: 1664647 bytes, checksum: 048ae03c92096513dd4be4afaa8fe70a (MD5) Previous issue date: 2023-04-20Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal da ParaíbaPrograma de Pós-Graduação em MatemáticaUFPBBrasilMatemáticaAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAMatemática - Desigualdade de Kahane-Salem-ZygmundMétodos determinísticosJogo das luzes desbalanceadas de Gale-BerlekampTeorema de MacphailTeorema de Dvoretzky-RogersKahane-Salem-Zygmund inequalityDeterministic methodsGame of unbalanced lights by Gale-BerlekampMacphail theoremDvoretzky-Rogers theoremSobre a desigualdade de Kahane-Salem-Zygmund e resultados afinsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPellegrino, Daniel Marinhohttp://lattes.cnpq.br/107771123211228510503304476http://lattes.cnpq.br/8980089031560472Silva, Janiely Maria dareponame:Repositório Institucional da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPBTEXTJanielyMariaDaSilva_Tese.pdf.txtJanielyMariaDaSilva_Tese.pdf.txtExtracted texttext/plain104257https://repositorio.ufpb.br/jspui/bitstream/123456789/30471/4/JanielyMariaDaSilva_Tese.pdf.txtbe5320194187998238ac4f211f671515MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82390https://repositorio.ufpb.br/jspui/bitstream/123456789/30471/3/license.txte20ac18e101915e6935b82a641b985c0MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.ufpb.br/jspui/bitstream/123456789/30471/2/license_rdfc4c98de35c20c53220c07884f4def27cMD52ORIGINALJanielyMariaDaSilva_Tese.pdfJanielyMariaDaSilva_Tese.pdfapplication/pdf1664647https://repositorio.ufpb.br/jspui/bitstream/123456789/30471/1/JanielyMariaDaSilva_Tese.pdf048ae03c92096513dd4be4afaa8fe70aMD51123456789/304712024-06-22 03:09:10.583oai:repositorio.ufpb.br:123456789/30471QVVUT1JJWkHDh8ODTyBFIExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpBdXRvcml6byBlIGVzdG91IGRlIGFjb3JkbywgbmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbyBhdXRvLWRlcG9zaXRhZGEsIGNvbmZvcm1lIExlaSBuwrogOTYxMC85OCwgb3Mgc2VndWludGVzIHRlcm1vczoKIApEYSBEaXN0cmlidWnDp8OjbyBuw6NvLWV4Y2x1c2l2YSAKTyBhdXRvciBkZWNsYXJhIHF1ZTogCmEpIE8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0ZSB0ZXJtby4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50byBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuIApiKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBwYXJhIGNvbmNlZGVyIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0ZSB0ZXJtbywgZSBxdWUgZXNzZSBtYXRlcmlhbCBjdWpvcyBkaXJlaXRvcyBzw6NvIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IGNvbnRlw7pkbyBkbyB0cmFiYWxobyBlbnRyZWd1ZS4gCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIGJhc2VhZG8gZW0gdHJhYmFsaG8gZmluYW5jaWFkbyBvdSBhcG9pYWRvIHBvciBvdXRyYSBpbnN0aXR1acOnw6NvIHF1ZSBuw6NvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCmQpIENvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBvIGRpcmVpdG8gZGUgcmVwcm9kdXppciwgdHJhZHV6aXIsIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KZSkgVm9jw6ogY29uY29yZGEgcXVlIG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgpmKSBWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLgoKRG9zIEVtYmFyZ29zIGUgUmVzdHJpw6fDtWVzIGRlIEFjZXNzbwpPIGVtYmFyZ28gcG9kZXLDoSBzZXIgbWFudGlkbyBwb3IgYXTDqSAxICh1bSkgYW5vLCBwb2RlbmRvIHNlciBwcm9ycm9nYWRvIHBvciBpZ3VhbCBwZXLDrW9kbywgY29tIGEgbmVjZXNzaWRhZGUgZGUgYW5leGFyIGRvY3VtZW50b3MgY29tcHJvYmF0w7NyaW9zLiBPIHJlc3VtbyBlIG9zIG1ldGFkYWRvcyBkZXNjcml0aXZvcyBzZXLDo28gZGlzcG9uaWJpbGl6YWRvcyBubyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCLgpPIGRlcMOzc2l0byBkbyB0cmFiYWxobyDDqSBvYnJpZ2F0w7NyaW8sIGluZGVwZW5kZW50ZSBkbyBlbWJhcmdvLgpRdWFuZG8gZW1iYXJnYWRvLCBvIHRyYWJhbGhvIHBlcm1hbmVjZXLDoSBpbmRpc3BvbsOtdmVsIGVucXVhbnRvIHZpZ29yYXIgYXMgcmVzdHJpw6fDtWVzLiBQYXNzYWRvIG8gcGVyw61vZG8gZG8gZW1iYXJnbywgbyB0cmFiYWxobyBzZXLDoSBhdXRvbWF0aWNhbWVudGUgZGlzcG9uaWJpbGl6YWRvIG5vIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEIuIAo=Repositório InstitucionalPUBhttps://repositorio.ufpb.br/oai/requestdiretoria@ufpb.bropendoar:25462024-06-22T06:09:10Repositório Institucional da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.pt_BR.fl_str_mv |
Sobre a desigualdade de Kahane-Salem-Zygmund e resultados afins |
title |
Sobre a desigualdade de Kahane-Salem-Zygmund e resultados afins |
spellingShingle |
Sobre a desigualdade de Kahane-Salem-Zygmund e resultados afins Silva, Janiely Maria da CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Matemática - Desigualdade de Kahane-Salem-Zygmund Métodos determinísticos Jogo das luzes desbalanceadas de Gale-Berlekamp Teorema de Macphail Teorema de Dvoretzky-Rogers Kahane-Salem-Zygmund inequality Deterministic methods Game of unbalanced lights by Gale-Berlekamp Macphail theorem Dvoretzky-Rogers theorem |
title_short |
Sobre a desigualdade de Kahane-Salem-Zygmund e resultados afins |
title_full |
Sobre a desigualdade de Kahane-Salem-Zygmund e resultados afins |
title_fullStr |
Sobre a desigualdade de Kahane-Salem-Zygmund e resultados afins |
title_full_unstemmed |
Sobre a desigualdade de Kahane-Salem-Zygmund e resultados afins |
title_sort |
Sobre a desigualdade de Kahane-Salem-Zygmund e resultados afins |
author |
Silva, Janiely Maria da |
author_facet |
Silva, Janiely Maria da |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Pellegrino, Daniel Marinho |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1077711232112285 |
dc.contributor.authorID.fl_str_mv |
10503304476 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8980089031560472 |
dc.contributor.author.fl_str_mv |
Silva, Janiely Maria da |
contributor_str_mv |
Pellegrino, Daniel Marinho |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Matemática - Desigualdade de Kahane-Salem-Zygmund Métodos determinísticos Jogo das luzes desbalanceadas de Gale-Berlekamp Teorema de Macphail Teorema de Dvoretzky-Rogers Kahane-Salem-Zygmund inequality Deterministic methods Game of unbalanced lights by Gale-Berlekamp Macphail theorem Dvoretzky-Rogers theorem |
dc.subject.por.fl_str_mv |
Matemática - Desigualdade de Kahane-Salem-Zygmund Métodos determinísticos Jogo das luzes desbalanceadas de Gale-Berlekamp Teorema de Macphail Teorema de Dvoretzky-Rogers Kahane-Salem-Zygmund inequality Deterministic methods Game of unbalanced lights by Gale-Berlekamp Macphail theorem Dvoretzky-Rogers theorem |
description |
Neste trabalho, revisitamos e exploramos os seguintes resultados clássicos: a desigualdade de Kahane-Salem-Zygmund (por simplicidade, KSZ), o jogo das luzes desbalanceadas de Gale-Berlekamp e o Teorema de Dvoretzky-Rogers. A princípio, apresentamos uma versão multilinear estendida da KSZ, com a qual obtivemos as estimativas assintóticas ótimas para os expoentes em casos não contemplados pelas versões anteriores. Em particular, provamos que uma conjectura proposta por Albuquerque e Rezende é falsa. Em seguida, inspirados por um antigo resultado de Bohnenblust e Hille, investigamos como certas matrizes de escalares complexos podem ser usadas para substituir os coeficientes ±1, para obter variantes da KSZ com melhores propriedades. Nessa direção, propusemos uma versão contínua para o famoso jogo das luzes desbalanceadas de Gale-Berlekamp, com boas estimativas. Finalmente, usando a mesma classe de matrizes, obtivemos uma prova construtiva para o Teorema de Dvoretzky-Rogers em espaços de sequências com escalares complexos. Mais precisamente, dado p ∈ [1, 2], fornecemos exemplos de uma série (x(j))∞j=1 incondicionalmente somável em lp(C) com P∞j=1 kx(j)k2−ε = ∞, para todo ε > 0. Usando ainda o "Sistema de Walsh", apresentamos uma construção similar para o caso de espaços de sequências com escalares reais. |
publishDate |
2023 |
dc.date.available.fl_str_mv |
2023-10-10 2024-06-21T13:27:30Z |
dc.date.issued.fl_str_mv |
2023-04-20 |
dc.date.accessioned.fl_str_mv |
2024-06-21T13:27:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/30471 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/30471 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática |
dc.publisher.initials.fl_str_mv |
UFPB |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Matemática |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Repositório Institucional da UFPB |
collection |
Repositório Institucional da UFPB |
bitstream.url.fl_str_mv |
https://repositorio.ufpb.br/jspui/bitstream/123456789/30471/4/JanielyMariaDaSilva_Tese.pdf.txt https://repositorio.ufpb.br/jspui/bitstream/123456789/30471/3/license.txt https://repositorio.ufpb.br/jspui/bitstream/123456789/30471/2/license_rdf https://repositorio.ufpb.br/jspui/bitstream/123456789/30471/1/JanielyMariaDaSilva_Tese.pdf |
bitstream.checksum.fl_str_mv |
be5320194187998238ac4f211f671515 e20ac18e101915e6935b82a641b985c0 c4c98de35c20c53220c07884f4def27c 048ae03c92096513dd4be4afaa8fe70a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br |
_version_ |
1815449106923913216 |