Convergência incondicional e absoluta de séries em espaços de Banach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/26059 |
Resumo: | Neste trabalho, estudamos alguns dos principais resultados da teoria das sequˆencias incondicionalmente som´aveis. Comec¸amos com os Teoremas de Dirichlet e de Riemann, que est˜ao no contexto dos n´umeros reais, e passamos para alguns resultados no contexto de Espac¸os de Banach, dando destaque aos Teoremas de Macphail e de Dvoretzky e Rogers. |
id |
UFPB-2_ef05111fd115012fe8eab1930588539b |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/26059 |
network_acronym_str |
UFPB-2 |
network_name_str |
Repositório Institucional da UFPB |
repository_id_str |
|
spelling |
2023-01-30T19:40:56Z2022-10-032023-01-30T19:40:56Z2022-08-31https://repositorio.ufpb.br/jspui/handle/123456789/26059Neste trabalho, estudamos alguns dos principais resultados da teoria das sequˆencias incondicionalmente som´aveis. Comec¸amos com os Teoremas de Dirichlet e de Riemann, que est˜ao no contexto dos n´umeros reais, e passamos para alguns resultados no contexto de Espac¸os de Banach, dando destaque aos Teoremas de Macphail e de Dvoretzky e Rogers.In this work, we study some of the main results of the theory of unconditionally summable sequences. We start with Dirichlet’s and Riemann’s theorems, which are in the context of real numbers, and move on to some results in the context of Banach spaces, emphasizing Macphail’s and the Dvoretzky–Rogers theorems.Submitted by Fernando Augusto Alves Vieira (fernandovieira@biblioteca.ufpb.br) on 2023-01-20T10:21:26Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) AndersonDeFariasHerminio_Dissert.pdf: 489609 bytes, checksum: a30d9878ca276a77df66b138b724b63c (MD5)Approved for entry into archive by Biblioteca Digital de Teses e Dissertações BDTD (bdtd@biblioteca.ufpb.br) on 2023-01-30T19:40:56Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) AndersonDeFariasHerminio_Dissert.pdf: 489609 bytes, checksum: a30d9878ca276a77df66b138b724b63c (MD5)Made available in DSpace on 2023-01-30T19:40:56Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) AndersonDeFariasHerminio_Dissert.pdf: 489609 bytes, checksum: a30d9878ca276a77df66b138b724b63c (MD5) Previous issue date: 2022-08-31NenhumaporUniversidade Federal da ParaíbaPrograma de Pós-Graduação em MatemáticaUFPBBrasilMatemáticaAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAAnálise matemáticaTeoria das sequênciasTeorema de DirichletTeorema de RiemannEspaços de BanachMath analysisSequence TheoryDirichlet's theoremRiemann's theoremBanach SpacesSequênciasSériesConvergência incondicionalMacphailDvoretzky-RogersSequencesSeriesUnconditional convergenceConvergência incondicional e absoluta de séries em espaços de Banachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPellegrino, Daniel Marinhohttp://lattes.cnpq.br/107771123211228509929033432http://lattes.cnpq.br/6572718200279082Herminio, Anderson de Fariasreponame:Repositório Institucional da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPBTEXTAndersonDeFariasHerminio_Dissert.pdf.txtAndersonDeFariasHerminio_Dissert.pdf.txtExtracted texttext/plain78207https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/4/AndersonDeFariasHerminio_Dissert.pdf.txt7fcc2f110e9ba8a1bcd9c656e971bfc8MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82390https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/3/license.txte20ac18e101915e6935b82a641b985c0MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/2/license_rdfc4c98de35c20c53220c07884f4def27cMD52ORIGINALAndersonDeFariasHerminio_Dissert.pdfAndersonDeFariasHerminio_Dissert.pdfapplication/pdf489609https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/1/AndersonDeFariasHerminio_Dissert.pdfa30d9878ca276a77df66b138b724b63cMD51123456789/260592023-05-22 13:46:42.909QVVUT1JJWkHDh8ODTyBFIExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpBdXRvcml6byBlIGVzdG91IGRlIGFjb3JkbywgbmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbyBhdXRvLWRlcG9zaXRhZGEsIGNvbmZvcm1lIExlaSBuwrogOTYxMC85OCwgb3Mgc2VndWludGVzIHRlcm1vczoKIApEYSBEaXN0cmlidWnDp8OjbyBuw6NvLWV4Y2x1c2l2YSAKTyBhdXRvciBkZWNsYXJhIHF1ZTogCmEpIE8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0ZSB0ZXJtby4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50byBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuIApiKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBwYXJhIGNvbmNlZGVyIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0ZSB0ZXJtbywgZSBxdWUgZXNzZSBtYXRlcmlhbCBjdWpvcyBkaXJlaXRvcyBzw6NvIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IGNvbnRlw7pkbyBkbyB0cmFiYWxobyBlbnRyZWd1ZS4gCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIGJhc2VhZG8gZW0gdHJhYmFsaG8gZmluYW5jaWFkbyBvdSBhcG9pYWRvIHBvciBvdXRyYSBpbnN0aXR1acOnw6NvIHF1ZSBuw6NvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCmQpIENvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBvIGRpcmVpdG8gZGUgcmVwcm9kdXppciwgdHJhZHV6aXIsIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KZSkgVm9jw6ogY29uY29yZGEgcXVlIG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgpmKSBWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLgoKRG9zIEVtYmFyZ29zIGUgUmVzdHJpw6fDtWVzIGRlIEFjZXNzbwpPIGVtYmFyZ28gcG9kZXLDoSBzZXIgbWFudGlkbyBwb3IgYXTDqSAxICh1bSkgYW5vLCBwb2RlbmRvIHNlciBwcm9ycm9nYWRvIHBvciBpZ3VhbCBwZXLDrW9kbywgY29tIGEgbmVjZXNzaWRhZGUgZGUgYW5leGFyIGRvY3VtZW50b3MgY29tcHJvYmF0w7NyaW9zLiBPIHJlc3VtbyBlIG9zIG1ldGFkYWRvcyBkZXNjcml0aXZvcyBzZXLDo28gZGlzcG9uaWJpbGl6YWRvcyBubyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCLgpPIGRlcMOzc2l0byBkbyB0cmFiYWxobyDDqSBvYnJpZ2F0w7NyaW8sIGluZGVwZW5kZW50ZSBkbyBlbWJhcmdvLgpRdWFuZG8gZW1iYXJnYWRvLCBvIHRyYWJhbGhvIHBlcm1hbmVjZXLDoSBpbmRpc3BvbsOtdmVsIGVucXVhbnRvIHZpZ29yYXIgYXMgcmVzdHJpw6fDtWVzLiBQYXNzYWRvIG8gcGVyw61vZG8gZG8gZW1iYXJnbywgbyB0cmFiYWxobyBzZXLDoSBhdXRvbWF0aWNhbWVudGUgZGlzcG9uaWJpbGl6YWRvIG5vIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEIuIAo=Repositório InstitucionalPUB |
dc.title.pt_BR.fl_str_mv |
Convergência incondicional e absoluta de séries em espaços de Banach |
title |
Convergência incondicional e absoluta de séries em espaços de Banach |
spellingShingle |
Convergência incondicional e absoluta de séries em espaços de Banach Herminio, Anderson de Farias CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Análise matemática Teoria das sequências Teorema de Dirichlet Teorema de Riemann Espaços de Banach Math analysis Sequence Theory Dirichlet's theorem Riemann's theorem Banach Spaces Sequências Séries Convergência incondicional Macphail Dvoretzky-Rogers Sequences Series Unconditional convergence |
title_short |
Convergência incondicional e absoluta de séries em espaços de Banach |
title_full |
Convergência incondicional e absoluta de séries em espaços de Banach |
title_fullStr |
Convergência incondicional e absoluta de séries em espaços de Banach |
title_full_unstemmed |
Convergência incondicional e absoluta de séries em espaços de Banach |
title_sort |
Convergência incondicional e absoluta de séries em espaços de Banach |
author |
Herminio, Anderson de Farias |
author_facet |
Herminio, Anderson de Farias |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Pellegrino, Daniel Marinho |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1077711232112285 |
dc.contributor.authorID.fl_str_mv |
09929033432 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6572718200279082 |
dc.contributor.author.fl_str_mv |
Herminio, Anderson de Farias |
contributor_str_mv |
Pellegrino, Daniel Marinho |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Análise matemática Teoria das sequências Teorema de Dirichlet Teorema de Riemann Espaços de Banach Math analysis Sequence Theory Dirichlet's theorem Riemann's theorem Banach Spaces Sequências Séries Convergência incondicional Macphail Dvoretzky-Rogers Sequences Series Unconditional convergence |
dc.subject.por.fl_str_mv |
Análise matemática Teoria das sequências Teorema de Dirichlet Teorema de Riemann Espaços de Banach Math analysis Sequence Theory Dirichlet's theorem Riemann's theorem Banach Spaces Sequências Séries Convergência incondicional Macphail Dvoretzky-Rogers Sequences Series Unconditional convergence |
description |
Neste trabalho, estudamos alguns dos principais resultados da teoria das sequˆencias incondicionalmente som´aveis. Comec¸amos com os Teoremas de Dirichlet e de Riemann, que est˜ao no contexto dos n´umeros reais, e passamos para alguns resultados no contexto de Espac¸os de Banach, dando destaque aos Teoremas de Macphail e de Dvoretzky e Rogers. |
publishDate |
2022 |
dc.date.available.fl_str_mv |
2022-10-03 2023-01-30T19:40:56Z |
dc.date.issued.fl_str_mv |
2022-08-31 |
dc.date.accessioned.fl_str_mv |
2023-01-30T19:40:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/26059 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/26059 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática |
dc.publisher.initials.fl_str_mv |
UFPB |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Matemática |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Repositório Institucional da UFPB |
collection |
Repositório Institucional da UFPB |
bitstream.url.fl_str_mv |
https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/4/AndersonDeFariasHerminio_Dissert.pdf.txt https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/3/license.txt https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/2/license_rdf https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/1/AndersonDeFariasHerminio_Dissert.pdf |
bitstream.checksum.fl_str_mv |
7fcc2f110e9ba8a1bcd9c656e971bfc8 e20ac18e101915e6935b82a641b985c0 c4c98de35c20c53220c07884f4def27c a30d9878ca276a77df66b138b724b63c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1777562278696058880 |