Convergência incondicional e absoluta de séries em espaços de Banach

Detalhes bibliográficos
Autor(a) principal: Herminio, Anderson de Farias
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/123456789/26059
Resumo: Neste trabalho, estudamos alguns dos principais resultados da teoria das sequˆencias incondicionalmente som´aveis. Comec¸amos com os Teoremas de Dirichlet e de Riemann, que est˜ao no contexto dos n´umeros reais, e passamos para alguns resultados no contexto de Espac¸os de Banach, dando destaque aos Teoremas de Macphail e de Dvoretzky e Rogers.
id UFPB-2_ef05111fd115012fe8eab1930588539b
oai_identifier_str oai:repositorio.ufpb.br:123456789/26059
network_acronym_str UFPB-2
network_name_str Repositório Institucional da UFPB
repository_id_str
spelling 2023-01-30T19:40:56Z2022-10-032023-01-30T19:40:56Z2022-08-31https://repositorio.ufpb.br/jspui/handle/123456789/26059Neste trabalho, estudamos alguns dos principais resultados da teoria das sequˆencias incondicionalmente som´aveis. Comec¸amos com os Teoremas de Dirichlet e de Riemann, que est˜ao no contexto dos n´umeros reais, e passamos para alguns resultados no contexto de Espac¸os de Banach, dando destaque aos Teoremas de Macphail e de Dvoretzky e Rogers.In this work, we study some of the main results of the theory of unconditionally summable sequences. We start with Dirichlet’s and Riemann’s theorems, which are in the context of real numbers, and move on to some results in the context of Banach spaces, emphasizing Macphail’s and the Dvoretzky–Rogers theorems.Submitted by Fernando Augusto Alves Vieira (fernandovieira@biblioteca.ufpb.br) on 2023-01-20T10:21:26Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) AndersonDeFariasHerminio_Dissert.pdf: 489609 bytes, checksum: a30d9878ca276a77df66b138b724b63c (MD5)Approved for entry into archive by Biblioteca Digital de Teses e Dissertações BDTD (bdtd@biblioteca.ufpb.br) on 2023-01-30T19:40:56Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) AndersonDeFariasHerminio_Dissert.pdf: 489609 bytes, checksum: a30d9878ca276a77df66b138b724b63c (MD5)Made available in DSpace on 2023-01-30T19:40:56Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) AndersonDeFariasHerminio_Dissert.pdf: 489609 bytes, checksum: a30d9878ca276a77df66b138b724b63c (MD5) Previous issue date: 2022-08-31NenhumaporUniversidade Federal da ParaíbaPrograma de Pós-Graduação em MatemáticaUFPBBrasilMatemáticaAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAAnálise matemáticaTeoria das sequênciasTeorema de DirichletTeorema de RiemannEspaços de BanachMath analysisSequence TheoryDirichlet's theoremRiemann's theoremBanach SpacesSequênciasSériesConvergência incondicionalMacphailDvoretzky-RogersSequencesSeriesUnconditional convergenceConvergência incondicional e absoluta de séries em espaços de Banachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPellegrino, Daniel Marinhohttp://lattes.cnpq.br/107771123211228509929033432http://lattes.cnpq.br/6572718200279082Herminio, Anderson de Fariasreponame:Repositório Institucional da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPBTEXTAndersonDeFariasHerminio_Dissert.pdf.txtAndersonDeFariasHerminio_Dissert.pdf.txtExtracted texttext/plain78207https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/4/AndersonDeFariasHerminio_Dissert.pdf.txt7fcc2f110e9ba8a1bcd9c656e971bfc8MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82390https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/3/license.txte20ac18e101915e6935b82a641b985c0MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/2/license_rdfc4c98de35c20c53220c07884f4def27cMD52ORIGINALAndersonDeFariasHerminio_Dissert.pdfAndersonDeFariasHerminio_Dissert.pdfapplication/pdf489609https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/1/AndersonDeFariasHerminio_Dissert.pdfa30d9878ca276a77df66b138b724b63cMD51123456789/260592023-05-22 13:46:42.909QVVUT1JJWkHDh8ODTyBFIExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpBdXRvcml6byBlIGVzdG91IGRlIGFjb3JkbywgbmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbyBhdXRvLWRlcG9zaXRhZGEsIGNvbmZvcm1lIExlaSBuwrogOTYxMC85OCwgb3Mgc2VndWludGVzIHRlcm1vczoKIApEYSBEaXN0cmlidWnDp8OjbyBuw6NvLWV4Y2x1c2l2YSAKTyBhdXRvciBkZWNsYXJhIHF1ZTogCmEpIE8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0ZSB0ZXJtby4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50byBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuIApiKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBwYXJhIGNvbmNlZGVyIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0ZSB0ZXJtbywgZSBxdWUgZXNzZSBtYXRlcmlhbCBjdWpvcyBkaXJlaXRvcyBzw6NvIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IGNvbnRlw7pkbyBkbyB0cmFiYWxobyBlbnRyZWd1ZS4gCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIGJhc2VhZG8gZW0gdHJhYmFsaG8gZmluYW5jaWFkbyBvdSBhcG9pYWRvIHBvciBvdXRyYSBpbnN0aXR1acOnw6NvIHF1ZSBuw6NvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCmQpIENvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBvIGRpcmVpdG8gZGUgcmVwcm9kdXppciwgdHJhZHV6aXIsIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KZSkgVm9jw6ogY29uY29yZGEgcXVlIG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgpmKSBWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLgoKRG9zIEVtYmFyZ29zIGUgUmVzdHJpw6fDtWVzIGRlIEFjZXNzbwpPIGVtYmFyZ28gcG9kZXLDoSBzZXIgbWFudGlkbyBwb3IgYXTDqSAxICh1bSkgYW5vLCBwb2RlbmRvIHNlciBwcm9ycm9nYWRvIHBvciBpZ3VhbCBwZXLDrW9kbywgY29tIGEgbmVjZXNzaWRhZGUgZGUgYW5leGFyIGRvY3VtZW50b3MgY29tcHJvYmF0w7NyaW9zLiBPIHJlc3VtbyBlIG9zIG1ldGFkYWRvcyBkZXNjcml0aXZvcyBzZXLDo28gZGlzcG9uaWJpbGl6YWRvcyBubyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCLgpPIGRlcMOzc2l0byBkbyB0cmFiYWxobyDDqSBvYnJpZ2F0w7NyaW8sIGluZGVwZW5kZW50ZSBkbyBlbWJhcmdvLgpRdWFuZG8gZW1iYXJnYWRvLCBvIHRyYWJhbGhvIHBlcm1hbmVjZXLDoSBpbmRpc3BvbsOtdmVsIGVucXVhbnRvIHZpZ29yYXIgYXMgcmVzdHJpw6fDtWVzLiBQYXNzYWRvIG8gcGVyw61vZG8gZG8gZW1iYXJnbywgbyB0cmFiYWxobyBzZXLDoSBhdXRvbWF0aWNhbWVudGUgZGlzcG9uaWJpbGl6YWRvIG5vIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEIuIAo=Repositório InstitucionalPUB
dc.title.pt_BR.fl_str_mv Convergência incondicional e absoluta de séries em espaços de Banach
title Convergência incondicional e absoluta de séries em espaços de Banach
spellingShingle Convergência incondicional e absoluta de séries em espaços de Banach
Herminio, Anderson de Farias
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Análise matemática
Teoria das sequências
Teorema de Dirichlet
Teorema de Riemann
Espaços de Banach
Math analysis
Sequence Theory
Dirichlet's theorem
Riemann's theorem
Banach Spaces
Sequências
Séries
Convergência incondicional
Macphail
Dvoretzky-Rogers
Sequences
Series
Unconditional convergence
title_short Convergência incondicional e absoluta de séries em espaços de Banach
title_full Convergência incondicional e absoluta de séries em espaços de Banach
title_fullStr Convergência incondicional e absoluta de séries em espaços de Banach
title_full_unstemmed Convergência incondicional e absoluta de séries em espaços de Banach
title_sort Convergência incondicional e absoluta de séries em espaços de Banach
author Herminio, Anderson de Farias
author_facet Herminio, Anderson de Farias
author_role author
dc.contributor.advisor1.fl_str_mv Pellegrino, Daniel Marinho
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1077711232112285
dc.contributor.authorID.fl_str_mv 09929033432
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6572718200279082
dc.contributor.author.fl_str_mv Herminio, Anderson de Farias
contributor_str_mv Pellegrino, Daniel Marinho
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
topic CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Análise matemática
Teoria das sequências
Teorema de Dirichlet
Teorema de Riemann
Espaços de Banach
Math analysis
Sequence Theory
Dirichlet's theorem
Riemann's theorem
Banach Spaces
Sequências
Séries
Convergência incondicional
Macphail
Dvoretzky-Rogers
Sequences
Series
Unconditional convergence
dc.subject.por.fl_str_mv Análise matemática
Teoria das sequências
Teorema de Dirichlet
Teorema de Riemann
Espaços de Banach
Math analysis
Sequence Theory
Dirichlet's theorem
Riemann's theorem
Banach Spaces
Sequências
Séries
Convergência incondicional
Macphail
Dvoretzky-Rogers
Sequences
Series
Unconditional convergence
description Neste trabalho, estudamos alguns dos principais resultados da teoria das sequˆencias incondicionalmente som´aveis. Comec¸amos com os Teoremas de Dirichlet e de Riemann, que est˜ao no contexto dos n´umeros reais, e passamos para alguns resultados no contexto de Espac¸os de Banach, dando destaque aos Teoremas de Macphail e de Dvoretzky e Rogers.
publishDate 2022
dc.date.available.fl_str_mv 2022-10-03
2023-01-30T19:40:56Z
dc.date.issued.fl_str_mv 2022-08-31
dc.date.accessioned.fl_str_mv 2023-01-30T19:40:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/26059
url https://repositorio.ufpb.br/jspui/handle/123456789/26059
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática
dc.publisher.initials.fl_str_mv UFPB
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Matemática
publisher.none.fl_str_mv Universidade Federal da Paraíba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Repositório Institucional da UFPB
collection Repositório Institucional da UFPB
bitstream.url.fl_str_mv https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/4/AndersonDeFariasHerminio_Dissert.pdf.txt
https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/3/license.txt
https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/2/license_rdf
https://repositorio.ufpb.br/jspui/bitstream/123456789/26059/1/AndersonDeFariasHerminio_Dissert.pdf
bitstream.checksum.fl_str_mv 7fcc2f110e9ba8a1bcd9c656e971bfc8
e20ac18e101915e6935b82a641b985c0
c4c98de35c20c53220c07884f4def27c
a30d9878ca276a77df66b138b724b63c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777562278696058880