Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da Paraíba
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/26237 |
Resumo: | The objective of this study is to analyze the influence of possible predictors for the outcome of adverse events with regard to the degree of damage observed. The research was carried out through an exploratory and descriptive analysis, through a cross-sectional study with a quantitative approach, with a sample of 1,082 notifications, using variables from the database of the National Health Surveillance System - Notivisa, inserted from 01 January 2021 to December 31, 2021, where the logistic regression model was used, in which 1 is associated with the occurrence of a severe/death event and 0 is associated with the occurrence of mild/moderate cases. The adverse event reporting forms intended for health services in the intensive care unit sector were included in the study. To assess the phenomenon, the logistic regression model was adjusted to assess the bank's coding according to the listed predictors. As a result, among the significant variables estimated and according to their odds ratios, the professional contributing factors: Illegible information in the patient's medical record with odds ratio 319.79 and Risky/reckless behavior odds ratio 5.44 and the contributing factors related to patient: Absence forgetting odds ratio 6.08 and Neglectful behavior odds ratio 7.36 increase the chances for a serious adverse event and death. The model provided predictions that classified correctly in 75.4% of the cases and, therefore, it can be considered well-adjusted to the empirical data of the research. Non-compliance with standards (professional factor) and perceived understanding (patient factor) both with odds ratio <1 increase the chances of occurrence for a mild and moderate adverse event. With the model, it was also observed that male individuals aged between 18 and 55 years are more likely to be affected by serious adverse events and death. The model presented good predictive value when the adverse event presented a mild and moderate degree of damage, being correct 75.5% of the time and 70.8% when it predicted that the adverse event presented a degree of severe damage and death. Pressure injury was the most frequent adverse event in reports from patients in the Intensive Care Unit of Paraiba during the year 2021, however: failure involving venous catheter and accidental endotracheal extubation were the adverse events with the highest frequency of degree of serious damage/death. It is considered the need to strengthen the supply of the Notivisa system with strategies to encourage the practice of reporting adverse events related to health care by health services, because even with the limitations presented by the system, it is still possible through its coding classify the event according to the degree of damage and identify the main factors contributing to its prediction, enabling the implementation of new barriers to prevent damage related to health care and consequent provision of safer care by the intensive care units of the hospital. state of Paraiba. |
id |
UFPB_1908814e4ba22f6349a5db453b5b0480 |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/26237 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da ParaíbaPacientes - ParaíbaSegurança do pacienteEventos adversosFatores contribuintesPatients - ParaíbaPatient safetyAdverse eventsContributing factorsCNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVAThe objective of this study is to analyze the influence of possible predictors for the outcome of adverse events with regard to the degree of damage observed. The research was carried out through an exploratory and descriptive analysis, through a cross-sectional study with a quantitative approach, with a sample of 1,082 notifications, using variables from the database of the National Health Surveillance System - Notivisa, inserted from 01 January 2021 to December 31, 2021, where the logistic regression model was used, in which 1 is associated with the occurrence of a severe/death event and 0 is associated with the occurrence of mild/moderate cases. The adverse event reporting forms intended for health services in the intensive care unit sector were included in the study. To assess the phenomenon, the logistic regression model was adjusted to assess the bank's coding according to the listed predictors. As a result, among the significant variables estimated and according to their odds ratios, the professional contributing factors: Illegible information in the patient's medical record with odds ratio 319.79 and Risky/reckless behavior odds ratio 5.44 and the contributing factors related to patient: Absence forgetting odds ratio 6.08 and Neglectful behavior odds ratio 7.36 increase the chances for a serious adverse event and death. The model provided predictions that classified correctly in 75.4% of the cases and, therefore, it can be considered well-adjusted to the empirical data of the research. Non-compliance with standards (professional factor) and perceived understanding (patient factor) both with odds ratio <1 increase the chances of occurrence for a mild and moderate adverse event. With the model, it was also observed that male individuals aged between 18 and 55 years are more likely to be affected by serious adverse events and death. The model presented good predictive value when the adverse event presented a mild and moderate degree of damage, being correct 75.5% of the time and 70.8% when it predicted that the adverse event presented a degree of severe damage and death. Pressure injury was the most frequent adverse event in reports from patients in the Intensive Care Unit of Paraiba during the year 2021, however: failure involving venous catheter and accidental endotracheal extubation were the adverse events with the highest frequency of degree of serious damage/death. It is considered the need to strengthen the supply of the Notivisa system with strategies to encourage the practice of reporting adverse events related to health care by health services, because even with the limitations presented by the system, it is still possible through its coding classify the event according to the degree of damage and identify the main factors contributing to its prediction, enabling the implementation of new barriers to prevent damage related to health care and consequent provision of safer care by the intensive care units of the hospital. state of Paraiba.NenhumaO objetivo deste estudo é analisar a influência de possíveis preditores para o desfecho dos eventos adversos no que diz respeito ao grau de dano observado. A pesquisa foi realizada através de uma análise exploratória e descritiva, por meio de estudo transversal de abordagem quantitativa, com uma amostra de 1.082 notificações, utilizando as variáveis do banco de da- dos do Sistema Nacional de Vigilância Sanitária – Notivisa, inseridas de 01 de janeiro de 2021 a 31 de dezembro de 2021, onde foi utilizado o modelo de regressão logística, em que 1 está associado a ocorrência de um evento com grau grave/óbito e 0 para a ocorrência de casos com grau leve/moderado. Foram incluídos no estudo os formulários de notificações de eventos adversos destinado aos serviços de saúde do setor de unidade de terapia intensiva. Para avaliar o fenômeno foi ajustado o modelo de regressão logística para aferir as codificações do banco de acordo com os preditores elencados. Como resultados, dentre as variáveis significativas estimadas e de acordo com suas razões de chances os fatores contribuintes profissionais: Informações ilegíveis no prontuário ficha do paciente com odds ratio 319,79 e Comportamento arriscado/imprudente odds ratio 5,44 e os fatores contribuintes relacionados ao paciente: Ausência esquecimento odds ratio 6,08 e Comportamento negligente odds ratio 7,36 aumentam as chances para um evento adverso grave e óbito. O modelo proporcionou predições que classificaram corretamente em 75,4% dos casos e desse modo, o mesmo pode ser considerado bem ajustado aos dados empíricos da pesquisa. Já o descumprimento de normas (fator profissional) e percepção compreensão (fator paciente) ambos com odds ratio <1 aumentam as chances de ocorrência para um evento adverso leve e moderado. Com o modelo também se observou que indivíduos do sexo masculino e com faixa etária de 18 a 55 anos possuem mais chances de serem acometidos por eventos adversos grave e óbito. O modelo apresentou bom valor preditivo quando o evento adverso apresentou grau de dano leve e moderado, acertando em 75,5% das vezes e 70,8% quando predisse que o evento adverso apresentou grau de dano grave e óbito. A lesão por pressão foi o evento adverso mais frequente nas notificações dos pacientes de Unidade de Terapia Intensiva da Paraíba durante o ano de 2021, todavia: falha envolvendo cateter venoso e extubação endotraqueal acidental foram os eventos adversos com maior frequência de grau de dano grave/óbito. Considera-se a necessidade de fortalecer a alimentação do sistema Notivisa com estratégias de estímulo a prática da notificação de eventos adversos relacionados à assistência à saúde por parte dos serviços de saúde, pois mesmo com as limitações apresentadas pelo sistema, ainda é possível através de suas codificações classificar o evento de acordo com o grau de dano e identificar os principais fatores contribuintes para sua predição, possibilitando a implantação de novas barreiras para prevenção de danos relacionados à assistência em saúde e consequente oferta de um cuidado mais seguro pelas unidades de terapia intensiva do estado da Paraíba.Universidade Federal da ParaíbaBrasilCiências Exatas e da SaúdePrograma de Pós-Graduação em Modelos de Decisão e SaúdeUFPBGomes, Luciano Bezerrahttp://lattes.cnpq.br/2402822862588148Leite, José Carlos Lacerdahttp://lattes.cnpq.br/0549548560499543Lopes, Vívian de Oliveira2023-02-08T13:39:53Z2022-11-242023-02-08T13:39:53Z2022-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/26237porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2023-05-22T15:54:59Zoai:repositorio.ufpb.br:123456789/26237Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2023-05-22T15:54:59Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da Paraíba |
title |
Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da Paraíba |
spellingShingle |
Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da Paraíba Lopes, Vívian de Oliveira Pacientes - Paraíba Segurança do paciente Eventos adversos Fatores contribuintes Patients - Paraíba Patient safety Adverse events Contributing factors CNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA |
title_short |
Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da Paraíba |
title_full |
Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da Paraíba |
title_fullStr |
Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da Paraíba |
title_full_unstemmed |
Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da Paraíba |
title_sort |
Segurança do paciente: análise da influência de preditores para o desfecho dos eventos adversos relacionado à assistência à saúde em unidades de terapia intensiva do estado da Paraíba |
author |
Lopes, Vívian de Oliveira |
author_facet |
Lopes, Vívian de Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gomes, Luciano Bezerra http://lattes.cnpq.br/2402822862588148 Leite, José Carlos Lacerda http://lattes.cnpq.br/0549548560499543 |
dc.contributor.author.fl_str_mv |
Lopes, Vívian de Oliveira |
dc.subject.por.fl_str_mv |
Pacientes - Paraíba Segurança do paciente Eventos adversos Fatores contribuintes Patients - Paraíba Patient safety Adverse events Contributing factors CNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA |
topic |
Pacientes - Paraíba Segurança do paciente Eventos adversos Fatores contribuintes Patients - Paraíba Patient safety Adverse events Contributing factors CNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA |
description |
The objective of this study is to analyze the influence of possible predictors for the outcome of adverse events with regard to the degree of damage observed. The research was carried out through an exploratory and descriptive analysis, through a cross-sectional study with a quantitative approach, with a sample of 1,082 notifications, using variables from the database of the National Health Surveillance System - Notivisa, inserted from 01 January 2021 to December 31, 2021, where the logistic regression model was used, in which 1 is associated with the occurrence of a severe/death event and 0 is associated with the occurrence of mild/moderate cases. The adverse event reporting forms intended for health services in the intensive care unit sector were included in the study. To assess the phenomenon, the logistic regression model was adjusted to assess the bank's coding according to the listed predictors. As a result, among the significant variables estimated and according to their odds ratios, the professional contributing factors: Illegible information in the patient's medical record with odds ratio 319.79 and Risky/reckless behavior odds ratio 5.44 and the contributing factors related to patient: Absence forgetting odds ratio 6.08 and Neglectful behavior odds ratio 7.36 increase the chances for a serious adverse event and death. The model provided predictions that classified correctly in 75.4% of the cases and, therefore, it can be considered well-adjusted to the empirical data of the research. Non-compliance with standards (professional factor) and perceived understanding (patient factor) both with odds ratio <1 increase the chances of occurrence for a mild and moderate adverse event. With the model, it was also observed that male individuals aged between 18 and 55 years are more likely to be affected by serious adverse events and death. The model presented good predictive value when the adverse event presented a mild and moderate degree of damage, being correct 75.5% of the time and 70.8% when it predicted that the adverse event presented a degree of severe damage and death. Pressure injury was the most frequent adverse event in reports from patients in the Intensive Care Unit of Paraiba during the year 2021, however: failure involving venous catheter and accidental endotracheal extubation were the adverse events with the highest frequency of degree of serious damage/death. It is considered the need to strengthen the supply of the Notivisa system with strategies to encourage the practice of reporting adverse events related to health care by health services, because even with the limitations presented by the system, it is still possible through its coding classify the event according to the degree of damage and identify the main factors contributing to its prediction, enabling the implementation of new barriers to prevent damage related to health care and consequent provision of safer care by the intensive care units of the hospital. state of Paraiba. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-24 2022-08-29 2023-02-08T13:39:53Z 2023-02-08T13:39:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/26237 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/26237 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Ciências Exatas e da Saúde Programa de Pós-Graduação em Modelos de Decisão e Saúde UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Ciências Exatas e da Saúde Programa de Pós-Graduação em Modelos de Decisão e Saúde UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801843006122229760 |