A Comparative Study of Forecasting Methods in the Context of Digital Twins
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Engenharia e Pesquisa Aplicada |
Texto Completo: | http://revistas.poli.br/index.php/repa/article/view/2771 |
Resumo: | This paper describes and compares different forecasting techniques usedto build a real-world Industry 4.0 application using concepts of DigitalTwins. For this experiment, real data collected from a temperature sensorduring the initial stages of a manufacturing process is used. This raw datafrom the sensors is preprocessed using state-of-the-art time seriestechniques for gap removal, normalization, and interpolation. Theprocessed data are then used as input for the selected forecastingtechniques for training, forecasting, and tests. Finally, the rates of thedifferent techniques are compared using accuracy measures to determinethe most accurate technique to be used in the application to support itsforecasting use cases. This paper also explores different areas that canbe used as topics for future work. |
id |
UFPE-2_540de9b263d88802390c725efaaa7e2a |
---|---|
oai_identifier_str |
oai:ojs.poli.br:article/2771 |
network_acronym_str |
UFPE-2 |
network_name_str |
Revista de Engenharia e Pesquisa Aplicada |
repository_id_str |
|
spelling |
A Comparative Study of Forecasting Methods in the Context of Digital TwinsThis paper describes and compares different forecasting techniques usedto build a real-world Industry 4.0 application using concepts of DigitalTwins. For this experiment, real data collected from a temperature sensorduring the initial stages of a manufacturing process is used. This raw datafrom the sensors is preprocessed using state-of-the-art time seriestechniques for gap removal, normalization, and interpolation. Theprocessed data are then used as input for the selected forecastingtechniques for training, forecasting, and tests. Finally, the rates of thedifferent techniques are compared using accuracy measures to determinethe most accurate technique to be used in the application to support itsforecasting use cases. This paper also explores different areas that canbe used as topics for future work.This paper describes and compares different forecasting techniques usedto build a real-world Industry 4.0 application using concepts of DigitalTwins. For this experiment, real data collected from a temperature sensorduring the initial stages of a manufacturing process is used. This raw datafrom the sensors is preprocessed using state-of-the-art time seriestechniques for gap removal, normalization, and interpolation. Theprocessed data are then used as input for the selected forecastingtechniques for training, forecasting, and tests. Finally, the rates of thedifferent techniques are compared using accuracy measures to determinethe most accurate technique to be used in the application to support itsforecasting use cases. This paper also explores different areas that canbe used as topics for future work.Escola Politécnica de Pernambuco2023-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/277110.25286/repa.v9i1.2771Journal of Engineering and Applied Research; Vol 9 No 1 (2024): Edição Especial em Ciência de Dados e Analytics; 28-40Revista de Engenharia e Pesquisa Aplicada; v. 9 n. 1 (2024): Edição Especial em Ciência de Dados e Analytics; 28-402525-425110.25286/repa.v9i1reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/2771/895http://revistas.poli.br/index.php/repa/article/view/2771/896Copyright (c) 2024 João Souto Maior, Byron Leite Dantas Bezerra, Luciano Leal, Celso Antonio M Lopes Júnior, Cleber Zanchettinhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessMaior, João SoutoBezerra, Byron Leite DantasLeal, LucianoLopes Júnior, Celso Antonio MZanchettin, Cleber2023-12-30T10:15:41Zoai:ojs.poli.br:article/2771Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2023-12-30T10:15:41Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false |
dc.title.none.fl_str_mv |
A Comparative Study of Forecasting Methods in the Context of Digital Twins |
title |
A Comparative Study of Forecasting Methods in the Context of Digital Twins |
spellingShingle |
A Comparative Study of Forecasting Methods in the Context of Digital Twins Maior, João Souto |
title_short |
A Comparative Study of Forecasting Methods in the Context of Digital Twins |
title_full |
A Comparative Study of Forecasting Methods in the Context of Digital Twins |
title_fullStr |
A Comparative Study of Forecasting Methods in the Context of Digital Twins |
title_full_unstemmed |
A Comparative Study of Forecasting Methods in the Context of Digital Twins |
title_sort |
A Comparative Study of Forecasting Methods in the Context of Digital Twins |
author |
Maior, João Souto |
author_facet |
Maior, João Souto Bezerra, Byron Leite Dantas Leal, Luciano Lopes Júnior, Celso Antonio M Zanchettin, Cleber |
author_role |
author |
author2 |
Bezerra, Byron Leite Dantas Leal, Luciano Lopes Júnior, Celso Antonio M Zanchettin, Cleber |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Maior, João Souto Bezerra, Byron Leite Dantas Leal, Luciano Lopes Júnior, Celso Antonio M Zanchettin, Cleber |
description |
This paper describes and compares different forecasting techniques usedto build a real-world Industry 4.0 application using concepts of DigitalTwins. For this experiment, real data collected from a temperature sensorduring the initial stages of a manufacturing process is used. This raw datafrom the sensors is preprocessed using state-of-the-art time seriestechniques for gap removal, normalization, and interpolation. Theprocessed data are then used as input for the selected forecastingtechniques for training, forecasting, and tests. Finally, the rates of thedifferent techniques are compared using accuracy measures to determinethe most accurate technique to be used in the application to support itsforecasting use cases. This paper also explores different areas that canbe used as topics for future work. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/2771 10.25286/repa.v9i1.2771 |
url |
http://revistas.poli.br/index.php/repa/article/view/2771 |
identifier_str_mv |
10.25286/repa.v9i1.2771 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/2771/895 http://revistas.poli.br/index.php/repa/article/view/2771/896 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
dc.source.none.fl_str_mv |
Journal of Engineering and Applied Research; Vol 9 No 1 (2024): Edição Especial em Ciência de Dados e Analytics; 28-40 Revista de Engenharia e Pesquisa Aplicada; v. 9 n. 1 (2024): Edição Especial em Ciência de Dados e Analytics; 28-40 2525-4251 10.25286/repa.v9i1 reponame:Revista de Engenharia e Pesquisa Aplicada instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Revista de Engenharia e Pesquisa Aplicada |
collection |
Revista de Engenharia e Pesquisa Aplicada |
repository.name.fl_str_mv |
Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
||repa@poli.br |
_version_ |
1798036000520273920 |