A Comparative Study of Forecasting Methods in the Context of Digital Twins

Detalhes bibliográficos
Autor(a) principal: Maior, João Souto
Data de Publicação: 2023
Outros Autores: Bezerra, Byron Leite Dantas, Leal, Luciano, Lopes Júnior, Celso Antonio M, Zanchettin, Cleber
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Engenharia e Pesquisa Aplicada
Texto Completo: http://revistas.poli.br/index.php/repa/article/view/2771
Resumo: This paper describes and compares different forecasting techniques usedto build a real-world Industry 4.0 application using concepts of DigitalTwins. For this experiment, real data collected from a temperature sensorduring the initial stages of a manufacturing process is used. This raw datafrom the sensors is preprocessed using state-of-the-art time seriestechniques for gap removal, normalization, and interpolation. Theprocessed data are then used as input for the selected forecastingtechniques for training, forecasting, and tests. Finally, the rates of thedifferent techniques are compared using accuracy measures to determinethe most accurate technique to be used in the application to support itsforecasting use cases. This paper also explores different areas that canbe used as topics for future work.
id UFPE-2_540de9b263d88802390c725efaaa7e2a
oai_identifier_str oai:ojs.poli.br:article/2771
network_acronym_str UFPE-2
network_name_str Revista de Engenharia e Pesquisa Aplicada
repository_id_str
spelling A Comparative Study of Forecasting Methods in the Context of Digital TwinsThis paper describes and compares different forecasting techniques usedto build a real-world Industry 4.0 application using concepts of DigitalTwins. For this experiment, real data collected from a temperature sensorduring the initial stages of a manufacturing process is used. This raw datafrom the sensors is preprocessed using state-of-the-art time seriestechniques for gap removal, normalization, and interpolation. Theprocessed data are then used as input for the selected forecastingtechniques for training, forecasting, and tests. Finally, the rates of thedifferent techniques are compared using accuracy measures to determinethe most accurate technique to be used in the application to support itsforecasting use cases. This paper also explores different areas that canbe used as topics for future work.This paper describes and compares different forecasting techniques usedto build a real-world Industry 4.0 application using concepts of DigitalTwins. For this experiment, real data collected from a temperature sensorduring the initial stages of a manufacturing process is used. This raw datafrom the sensors is preprocessed using state-of-the-art time seriestechniques for gap removal, normalization, and interpolation. Theprocessed data are then used as input for the selected forecastingtechniques for training, forecasting, and tests. Finally, the rates of thedifferent techniques are compared using accuracy measures to determinethe most accurate technique to be used in the application to support itsforecasting use cases. This paper also explores different areas that canbe used as topics for future work.Escola Politécnica de Pernambuco2023-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/277110.25286/repa.v9i1.2771Journal of Engineering and Applied Research; Vol 9 No 1 (2024): Edição Especial em Ciência de Dados e Analytics; 28-40Revista de Engenharia e Pesquisa Aplicada; v. 9 n. 1 (2024): Edição Especial em Ciência de Dados e Analytics; 28-402525-425110.25286/repa.v9i1reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/2771/895http://revistas.poli.br/index.php/repa/article/view/2771/896Copyright (c) 2024 João Souto Maior, Byron Leite Dantas Bezerra, Luciano Leal, Celso Antonio M Lopes Júnior, Cleber Zanchettinhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessMaior, João SoutoBezerra, Byron Leite DantasLeal, LucianoLopes Júnior, Celso Antonio MZanchettin, Cleber2023-12-30T10:15:41Zoai:ojs.poli.br:article/2771Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2023-12-30T10:15:41Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv A Comparative Study of Forecasting Methods in the Context of Digital Twins
title A Comparative Study of Forecasting Methods in the Context of Digital Twins
spellingShingle A Comparative Study of Forecasting Methods in the Context of Digital Twins
Maior, João Souto
title_short A Comparative Study of Forecasting Methods in the Context of Digital Twins
title_full A Comparative Study of Forecasting Methods in the Context of Digital Twins
title_fullStr A Comparative Study of Forecasting Methods in the Context of Digital Twins
title_full_unstemmed A Comparative Study of Forecasting Methods in the Context of Digital Twins
title_sort A Comparative Study of Forecasting Methods in the Context of Digital Twins
author Maior, João Souto
author_facet Maior, João Souto
Bezerra, Byron Leite Dantas
Leal, Luciano
Lopes Júnior, Celso Antonio M
Zanchettin, Cleber
author_role author
author2 Bezerra, Byron Leite Dantas
Leal, Luciano
Lopes Júnior, Celso Antonio M
Zanchettin, Cleber
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Maior, João Souto
Bezerra, Byron Leite Dantas
Leal, Luciano
Lopes Júnior, Celso Antonio M
Zanchettin, Cleber
description This paper describes and compares different forecasting techniques usedto build a real-world Industry 4.0 application using concepts of DigitalTwins. For this experiment, real data collected from a temperature sensorduring the initial stages of a manufacturing process is used. This raw datafrom the sensors is preprocessed using state-of-the-art time seriestechniques for gap removal, normalization, and interpolation. Theprocessed data are then used as input for the selected forecastingtechniques for training, forecasting, and tests. Finally, the rates of thedifferent techniques are compared using accuracy measures to determinethe most accurate technique to be used in the application to support itsforecasting use cases. This paper also explores different areas that canbe used as topics for future work.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/2771
10.25286/repa.v9i1.2771
url http://revistas.poli.br/index.php/repa/article/view/2771
identifier_str_mv 10.25286/repa.v9i1.2771
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/2771/895
http://revistas.poli.br/index.php/repa/article/view/2771/896
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Escola Politécnica de Pernambuco
publisher.none.fl_str_mv Escola Politécnica de Pernambuco
dc.source.none.fl_str_mv Journal of Engineering and Applied Research; Vol 9 No 1 (2024): Edição Especial em Ciência de Dados e Analytics; 28-40
Revista de Engenharia e Pesquisa Aplicada; v. 9 n. 1 (2024): Edição Especial em Ciência de Dados e Analytics; 28-40
2525-4251
10.25286/repa.v9i1
reponame:Revista de Engenharia e Pesquisa Aplicada
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Revista de Engenharia e Pesquisa Aplicada
collection Revista de Engenharia e Pesquisa Aplicada
repository.name.fl_str_mv Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv ||repa@poli.br
_version_ 1798036000520273920