Redes neurais lógicas quânticas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000hs70 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2273 |
Resumo: | Através da miniaturização dos componentes dos chips a cada ano a velocidade dos computadores é aproximadamente duplicada. Esta rápida redução dos componentes dos chips é conhecida como a Lei de Moore. Apesar de se manter verdadeira nos últimos anos, a lei de Moore está se aproximando de seu limite, pois os componentes dos chips estão se aproximando a escala atômica. Neste momento, será necessário considerar os efeitos da mecânica quântica sobre a computação. O estudo dos modelos de computação não convencionais, como a computação quântica, é um dos grandes desafios da pesquisa em computação no Brasil. O desenvolvimento de novos hardwares com tecnologias diferentes do silício pode ter consequências nas técnicas de desenvolvimento de hardware e software. O objetivo desta dissertação é investigar que vantagens podem ser obtidas através da aplicação de técnicas da computação quântica no desenvolvimento e treinamento de modelos de redes neurais artificiais. Três modelos de redes neurais quânticas baseados em modelos de redes neurais sem pesos foram propostos. Ao contrário dos outros modelos de redes neurais quânticas, as redes propostas nesta dissertação podem simular as redes em que foram baseadas. A principal vantagem dos modelos quânticos neurais propostos nesta dissertação está no seu algoritmo de treinamento, um algoritmo onde a rede neural é executada apenas uma vez independente do tamanho do conjunto de treinamento e da rede neural. O algoritmo proposto foi baseado em uma memória associativa quântica e no algoritmo de busca de Grover |
id |
UFPE_066b7ba09154db23a2c26f4027c1127e |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2273 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SILVA, Adenilton José daLUDERMIR, Teresa Bernarda2014-06-12T15:56:05Z2014-06-12T15:56:05Z2011-01-31José da Silva, Adenilton; Bernarda Ludermir, Teresa. Redes neurais lógicas quânticas. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/2273ark:/64986/001300000hs70Através da miniaturização dos componentes dos chips a cada ano a velocidade dos computadores é aproximadamente duplicada. Esta rápida redução dos componentes dos chips é conhecida como a Lei de Moore. Apesar de se manter verdadeira nos últimos anos, a lei de Moore está se aproximando de seu limite, pois os componentes dos chips estão se aproximando a escala atômica. Neste momento, será necessário considerar os efeitos da mecânica quântica sobre a computação. O estudo dos modelos de computação não convencionais, como a computação quântica, é um dos grandes desafios da pesquisa em computação no Brasil. O desenvolvimento de novos hardwares com tecnologias diferentes do silício pode ter consequências nas técnicas de desenvolvimento de hardware e software. O objetivo desta dissertação é investigar que vantagens podem ser obtidas através da aplicação de técnicas da computação quântica no desenvolvimento e treinamento de modelos de redes neurais artificiais. Três modelos de redes neurais quânticas baseados em modelos de redes neurais sem pesos foram propostos. Ao contrário dos outros modelos de redes neurais quânticas, as redes propostas nesta dissertação podem simular as redes em que foram baseadas. A principal vantagem dos modelos quânticos neurais propostos nesta dissertação está no seu algoritmo de treinamento, um algoritmo onde a rede neural é executada apenas uma vez independente do tamanho do conjunto de treinamento e da rede neural. O algoritmo proposto foi baseado em uma memória associativa quântica e no algoritmo de busca de GroverConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedes neurais sem pesosComputação quânticaRedes neurais quânticasRedes neurais lógicas quânticasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALarquivo2496_1.pdfapplication/pdf927111https://repositorio.ufpe.br/bitstream/123456789/2273/1/arquivo2496_1.pdf2a7e700951f9ece734722fe6fb1707f8MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2273/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo2496_1.pdf.txtarquivo2496_1.pdf.txtExtracted texttext/plain160450https://repositorio.ufpe.br/bitstream/123456789/2273/3/arquivo2496_1.pdf.txt55cd835d6a7c2636463b39a122c7a806MD53THUMBNAILarquivo2496_1.pdf.jpgarquivo2496_1.pdf.jpgGenerated Thumbnailimage/jpeg1257https://repositorio.ufpe.br/bitstream/123456789/2273/4/arquivo2496_1.pdf.jpg9cd4bf37df5f5d630193374872c7feb4MD54123456789/22732019-10-25 02:49:02.163oai:repositorio.ufpe.br:123456789/2273Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:49:02Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Redes neurais lógicas quânticas |
title |
Redes neurais lógicas quânticas |
spellingShingle |
Redes neurais lógicas quânticas SILVA, Adenilton José da Redes neurais sem pesos Computação quântica Redes neurais quânticas |
title_short |
Redes neurais lógicas quânticas |
title_full |
Redes neurais lógicas quânticas |
title_fullStr |
Redes neurais lógicas quânticas |
title_full_unstemmed |
Redes neurais lógicas quânticas |
title_sort |
Redes neurais lógicas quânticas |
author |
SILVA, Adenilton José da |
author_facet |
SILVA, Adenilton José da |
author_role |
author |
dc.contributor.author.fl_str_mv |
SILVA, Adenilton José da |
dc.contributor.advisor1.fl_str_mv |
LUDERMIR, Teresa Bernarda |
contributor_str_mv |
LUDERMIR, Teresa Bernarda |
dc.subject.por.fl_str_mv |
Redes neurais sem pesos Computação quântica Redes neurais quânticas |
topic |
Redes neurais sem pesos Computação quântica Redes neurais quânticas |
description |
Através da miniaturização dos componentes dos chips a cada ano a velocidade dos computadores é aproximadamente duplicada. Esta rápida redução dos componentes dos chips é conhecida como a Lei de Moore. Apesar de se manter verdadeira nos últimos anos, a lei de Moore está se aproximando de seu limite, pois os componentes dos chips estão se aproximando a escala atômica. Neste momento, será necessário considerar os efeitos da mecânica quântica sobre a computação. O estudo dos modelos de computação não convencionais, como a computação quântica, é um dos grandes desafios da pesquisa em computação no Brasil. O desenvolvimento de novos hardwares com tecnologias diferentes do silício pode ter consequências nas técnicas de desenvolvimento de hardware e software. O objetivo desta dissertação é investigar que vantagens podem ser obtidas através da aplicação de técnicas da computação quântica no desenvolvimento e treinamento de modelos de redes neurais artificiais. Três modelos de redes neurais quânticas baseados em modelos de redes neurais sem pesos foram propostos. Ao contrário dos outros modelos de redes neurais quânticas, as redes propostas nesta dissertação podem simular as redes em que foram baseadas. A principal vantagem dos modelos quânticos neurais propostos nesta dissertação está no seu algoritmo de treinamento, um algoritmo onde a rede neural é executada apenas uma vez independente do tamanho do conjunto de treinamento e da rede neural. O algoritmo proposto foi baseado em uma memória associativa quântica e no algoritmo de busca de Grover |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:56:05Z |
dc.date.available.fl_str_mv |
2014-06-12T15:56:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
José da Silva, Adenilton; Bernarda Ludermir, Teresa. Redes neurais lógicas quânticas. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2273 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000hs70 |
identifier_str_mv |
José da Silva, Adenilton; Bernarda Ludermir, Teresa. Redes neurais lógicas quânticas. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011. ark:/64986/001300000hs70 |
url |
https://repositorio.ufpe.br/handle/123456789/2273 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2273/1/arquivo2496_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2273/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2273/3/arquivo2496_1.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/2273/4/arquivo2496_1.pdf.jpg |
bitstream.checksum.fl_str_mv |
2a7e700951f9ece734722fe6fb1707f8 8a4605be74aa9ea9d79846c1fba20a33 55cd835d6a7c2636463b39a122c7a806 9cd4bf37df5f5d630193374872c7feb4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172830931714048 |