An online local pool generation method for dynamic classifier selection

Detalhes bibliográficos
Autor(a) principal: SOUZA, Mariana de Araújo
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000z9th
Texto Completo: https://repositorio.ufpe.br/handle/123456789/30521
Resumo: Dynamic Classifier Selection (DCS) techniques have difficulty in selecting the most competent classifier in a pool, even when its presence is assured. Since the DCS techniques rely only on local data to estimate a classifier’s competence, the manner in which the pool is generated could affect the choice of the best classifier for a given instance. That is, the global perspective in which pools are generated may not help the DCS techniques in selecting a competent classifier for instances that are likely to be misclassified. Thus, it is proposed in this work an online pool generation method that produces a locally accurate pool for test samples in overlap regions of the feature space. That way, by using classifiers that were generated in a local scope, it could be easier for the DCS techniques to select the best one for those instances they would most probably misclassify. For the instances that are far from the class borders, a simple nearest neighbors rule is used in the proposed method. In this dissertation, an overview of the area of Multiple Classifier Systems is presented, with focus on Dynamic Selection schemes. The most relevant DCS techniques are also introduced, and an analysis on their effectiveness in selecting the most competent classifier for a given instance in a globally generated pool is presented. Based on that analysis, an online local pool generation scheme is proposed and analyzed step-by-step. The proposed method is then evaluated over 20 classification problems, and the effect of its parameters on performance are analyzed. Moreover, a comparative study with other related methods is performed and the experimental results show that the DCS techniques were more able to select the best classifier for a given sample when using the proposed locally generated pool than when using a globally generated pool. Furthermore, the proposed method obtained a greater accuracy rate in comparison with the related methods for all DCS techniques, on average, and presented a considerable improvement for problems with a high proportion of borderline instances. It also yielded a significant increase in performance compared to most related methods evaluated in this work.
id UFPE_1f0d440881598af54b455d240ebd3599
oai_identifier_str oai:repositorio.ufpe.br:123456789/30521
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SOUZA, Mariana de Araújohttp://lattes.cnpq.br/0113995660067445http://lattes.cnpq.br/8577312109146354CAVALCANTI, George Darmiton da CunhaSABOURIN, Robert2019-05-07T20:30:24Z2019-05-07T20:30:24Z2018-02-27https://repositorio.ufpe.br/handle/123456789/30521ark:/64986/001300000z9thDynamic Classifier Selection (DCS) techniques have difficulty in selecting the most competent classifier in a pool, even when its presence is assured. Since the DCS techniques rely only on local data to estimate a classifier’s competence, the manner in which the pool is generated could affect the choice of the best classifier for a given instance. That is, the global perspective in which pools are generated may not help the DCS techniques in selecting a competent classifier for instances that are likely to be misclassified. Thus, it is proposed in this work an online pool generation method that produces a locally accurate pool for test samples in overlap regions of the feature space. That way, by using classifiers that were generated in a local scope, it could be easier for the DCS techniques to select the best one for those instances they would most probably misclassify. For the instances that are far from the class borders, a simple nearest neighbors rule is used in the proposed method. In this dissertation, an overview of the area of Multiple Classifier Systems is presented, with focus on Dynamic Selection schemes. The most relevant DCS techniques are also introduced, and an analysis on their effectiveness in selecting the most competent classifier for a given instance in a globally generated pool is presented. Based on that analysis, an online local pool generation scheme is proposed and analyzed step-by-step. The proposed method is then evaluated over 20 classification problems, and the effect of its parameters on performance are analyzed. Moreover, a comparative study with other related methods is performed and the experimental results show that the DCS techniques were more able to select the best classifier for a given sample when using the proposed locally generated pool than when using a globally generated pool. Furthermore, the proposed method obtained a greater accuracy rate in comparison with the related methods for all DCS techniques, on average, and presented a considerable improvement for problems with a high proportion of borderline instances. It also yielded a significant increase in performance compared to most related methods evaluated in this work.CNPqTécnicas de Seleção Dinâmica de Classificador (DCS) têm dificuldade em selecionar o classificador mais competente em um pool, mesmo quando a presença do mesmo é garantida. Visto que as técnicas de DCS utilizam apenas dados locais para estimar a competência de um classificador, a maneira na qual o pool é gerado poderia afetar na escolha do melhor classificador para uma dada instância. Isto é, a perspectiva global na qual os pools são gerados podem não ajudar as técnicas de DCS na seleção de um classificador competente para instâncias que são mais prováveis de ser incorretamente classificadas. Portanto, é proposto neste trabalho um método online de geração de pool de classificadores que produz um pool localmente preciso para amostras de teste em áreas de sobreposição de classes no espaço de características. Dessa forma, ao usar classificadores que foram gerados em um escopo local, poderia ser mais fácil para as técnicas de DCS selecionarem o melhor classificador para essas instâncias mais difíceis de classificar. Para as amostras posicionadas longe das bordas das classes, uma simples abordagem utilizando os vizinhos mais próximos é usada no método proposto. Nesta dissertação, uma visão geral da área de Sistemas de Multiplos Classificadores é apresentada, com foco em técnicas de seleção dinâmica. As técnicas de DCS mais relevantes também são introduzidas, e uma análise da eficácia das mesmas em selecionar o classificador mais competente para uma dada amostra em um pool gerado globalmente é apresentada. Baseado nessa análise, um método de geração local de pool de classificadores é proposto e analisado passo-a-passo. O método proposto é então avaliado usando 20 problemas de classificação, e o efeito de seus parâmetros no desempenho são analisados. Além disso, um estudo comparativo com outros métodos relacionados é realizado e os resultados experimentais mostram que as técnicas de DCS foram mais capazes de selecionar o melhor classificador para uma dada instância com o pool proposto, que foi gerado localmente, do que com um pool gerado de forma global. Ademais, o método proposto obteve uma maior taxa de acerto em comparação com os métodos relacionados para todas as técnicas de DCS, em média, e apresentou uma melhora considerável para problemas com uma alta proporção de instâncias próximas das bordas entre as classes. O método proposto também obteve um aumento significativo no desempenho em comparação com a maioria dos métodos relacionados que foram avaliados neste trabalho.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência artificialSeleção dinâmica de classificadorAn online local pool generation method for dynamic classifier selectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Mariana de Araújo Souza.pdf.jpgDISSERTAÇÃO Mariana de Araújo Souza.pdf.jpgGenerated Thumbnailimage/jpeg1244https://repositorio.ufpe.br/bitstream/123456789/30521/5/DISSERTA%c3%87%c3%83O%20Mariana%20de%20Ara%c3%bajo%20Souza.pdf.jpg7327b139d83128a15e6b303bcdaaec4cMD55ORIGINALDISSERTAÇÃO Mariana de Araújo Souza.pdfDISSERTAÇÃO Mariana de Araújo Souza.pdfapplication/pdf1031616https://repositorio.ufpe.br/bitstream/123456789/30521/1/DISSERTA%c3%87%c3%83O%20Mariana%20de%20Ara%c3%bajo%20Souza.pdf5191ce0023775bf3a5210e81a25832d9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/30521/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/30521/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Mariana de Araújo Souza.pdf.txtDISSERTAÇÃO Mariana de Araújo Souza.pdf.txtExtracted texttext/plain158790https://repositorio.ufpe.br/bitstream/123456789/30521/4/DISSERTA%c3%87%c3%83O%20Mariana%20de%20Ara%c3%bajo%20Souza.pdf.txt054c0b85f24c706a3e5f559d844aa356MD54123456789/305212019-10-25 10:31:59.932oai:repositorio.ufpe.br:123456789/30521TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T13:31:59Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv An online local pool generation method for dynamic classifier selection
title An online local pool generation method for dynamic classifier selection
spellingShingle An online local pool generation method for dynamic classifier selection
SOUZA, Mariana de Araújo
Inteligência artificial
Seleção dinâmica de classificador
title_short An online local pool generation method for dynamic classifier selection
title_full An online local pool generation method for dynamic classifier selection
title_fullStr An online local pool generation method for dynamic classifier selection
title_full_unstemmed An online local pool generation method for dynamic classifier selection
title_sort An online local pool generation method for dynamic classifier selection
author SOUZA, Mariana de Araújo
author_facet SOUZA, Mariana de Araújo
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0113995660067445
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8577312109146354
dc.contributor.author.fl_str_mv SOUZA, Mariana de Araújo
dc.contributor.advisor1.fl_str_mv CAVALCANTI, George Darmiton da Cunha
dc.contributor.advisor-co1.fl_str_mv SABOURIN, Robert
contributor_str_mv CAVALCANTI, George Darmiton da Cunha
SABOURIN, Robert
dc.subject.por.fl_str_mv Inteligência artificial
Seleção dinâmica de classificador
topic Inteligência artificial
Seleção dinâmica de classificador
description Dynamic Classifier Selection (DCS) techniques have difficulty in selecting the most competent classifier in a pool, even when its presence is assured. Since the DCS techniques rely only on local data to estimate a classifier’s competence, the manner in which the pool is generated could affect the choice of the best classifier for a given instance. That is, the global perspective in which pools are generated may not help the DCS techniques in selecting a competent classifier for instances that are likely to be misclassified. Thus, it is proposed in this work an online pool generation method that produces a locally accurate pool for test samples in overlap regions of the feature space. That way, by using classifiers that were generated in a local scope, it could be easier for the DCS techniques to select the best one for those instances they would most probably misclassify. For the instances that are far from the class borders, a simple nearest neighbors rule is used in the proposed method. In this dissertation, an overview of the area of Multiple Classifier Systems is presented, with focus on Dynamic Selection schemes. The most relevant DCS techniques are also introduced, and an analysis on their effectiveness in selecting the most competent classifier for a given instance in a globally generated pool is presented. Based on that analysis, an online local pool generation scheme is proposed and analyzed step-by-step. The proposed method is then evaluated over 20 classification problems, and the effect of its parameters on performance are analyzed. Moreover, a comparative study with other related methods is performed and the experimental results show that the DCS techniques were more able to select the best classifier for a given sample when using the proposed locally generated pool than when using a globally generated pool. Furthermore, the proposed method obtained a greater accuracy rate in comparison with the related methods for all DCS techniques, on average, and presented a considerable improvement for problems with a high proportion of borderline instances. It also yielded a significant increase in performance compared to most related methods evaluated in this work.
publishDate 2018
dc.date.issued.fl_str_mv 2018-02-27
dc.date.accessioned.fl_str_mv 2019-05-07T20:30:24Z
dc.date.available.fl_str_mv 2019-05-07T20:30:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/30521
dc.identifier.dark.fl_str_mv ark:/64986/001300000z9th
url https://repositorio.ufpe.br/handle/123456789/30521
identifier_str_mv ark:/64986/001300000z9th
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/30521/5/DISSERTA%c3%87%c3%83O%20Mariana%20de%20Ara%c3%bajo%20Souza.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/30521/1/DISSERTA%c3%87%c3%83O%20Mariana%20de%20Ara%c3%bajo%20Souza.pdf
https://repositorio.ufpe.br/bitstream/123456789/30521/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/30521/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/30521/4/DISSERTA%c3%87%c3%83O%20Mariana%20de%20Ara%c3%bajo%20Souza.pdf.txt
bitstream.checksum.fl_str_mv 7327b139d83128a15e6b303bcdaaec4c
5191ce0023775bf3a5210e81a25832d9
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
054c0b85f24c706a3e5f559d844aa356
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172951953113088