O grupo simplético na estabilidade de Gelfand-Lidskii
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000qqcm |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/45026 |
Resumo: | Este trabalho tem como objetivo estudar o papel que o grupo simplético desempenha no estudo dos sistemas Hamiltonianos periódicos lineares fortemente estáveis. Para isso, iremos fazer uso de ideias desenvolvidas por Krein, Gelfand e Lidskii no século passado e recentemente trabalhadas sob um novo ponto de vista na referência [1]. Iremos identificar um sistema Hamiltoniano linear periódico fortemente estável x ̇ = A(t)x com a sua matriz A(t) que chamaremos de matriz fortemente estável. Relacionaremos a este sistema o índice de Gelfand- Lidskii n(A), que será a classe de homotopia do caminho fechado Q(t) no grupo fundamental do grupo simplético, onde Q(t) é a matriz periódica numa decomposição de Floquet X(t) = Q(t)etB do matrizante da equação x ̇ = A(t)x. Diremos que duas matrizes fortemente estáveis A1(t) e A2(t) estão no mesmo domínio de estabilidade se existir uma homotopia ligando ambas de modo que cada elemento da homotopia também seja uma matriz fortemente estável. O índice de Gelfand-Lidskii nos dará uma maneira de classificar os domínios de estabilidade. |
id |
UFPE_326f806f2a9136b1ee8a320f809bca08 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/45026 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
PAIVA, Carlos Henrique Gonzaga de Oliveirahttp://lattes.cnpq.br/6799632745672175http://lattes.cnpq.br/0698732589703377CABRAL, Hildeberto Eulalio2022-07-07T16:28:57Z2022-07-07T16:28:57Z2022-02-21PAIVA, Carlos Henrique Gonzaga de Oliveira. O grupo simplético na estabilidade de Gelfand-Lidskii. 2022. Dissertação (Mestrado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/45026ark:/64986/001300000qqcmEste trabalho tem como objetivo estudar o papel que o grupo simplético desempenha no estudo dos sistemas Hamiltonianos periódicos lineares fortemente estáveis. Para isso, iremos fazer uso de ideias desenvolvidas por Krein, Gelfand e Lidskii no século passado e recentemente trabalhadas sob um novo ponto de vista na referência [1]. Iremos identificar um sistema Hamiltoniano linear periódico fortemente estável x ̇ = A(t)x com a sua matriz A(t) que chamaremos de matriz fortemente estável. Relacionaremos a este sistema o índice de Gelfand- Lidskii n(A), que será a classe de homotopia do caminho fechado Q(t) no grupo fundamental do grupo simplético, onde Q(t) é a matriz periódica numa decomposição de Floquet X(t) = Q(t)etB do matrizante da equação x ̇ = A(t)x. Diremos que duas matrizes fortemente estáveis A1(t) e A2(t) estão no mesmo domínio de estabilidade se existir uma homotopia ligando ambas de modo que cada elemento da homotopia também seja uma matriz fortemente estável. O índice de Gelfand-Lidskii nos dará uma maneira de classificar os domínios de estabilidade.CNPqIn this work we study the role of the symplectic group in the study of strongly stable linear Hamiltonian systems with periodic coefficients. To this end we follow the ideas developed by Krein, Gelfand and Lidskii in the last century and recently work out from a new point of view in the reference [1]. We will identify a strongly stable linear Hamiltonian system with periodic coefficients x ̇ = A(t)x with the coefficient matrix A(t) which we will call a strongly stable matrix. We assign to such a system the Gelfand-Lidskii index n(A) which is the homotopy class in the fundamental group of the symplectic group of the closed path Q(t) in the symplectic group, where Q(t) is the periodic matrix in a Floquet decomposition X(t) = Q(t)e tB of the matrizant of the equation x ̇ = A(t)x. We say that two strongly stable matrices A1(t) and A2(t) belong to the same stability domain if there exists a homotopy connecting them in such a way that each element of the homotopy is also a strongly stable matrix. The Gelfand-Lidskii index will give us a way of classifying the domains of stability.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnáliseGrupo simpléticoTeoremas de Krein-Gelfand-LidskiiÍndice de Gelfand-LidskiiO grupo simplético na estabilidade de Gelfand-Lidskiiinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/45026/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/45026/3/license.txt6928b9260b07fb2755249a5ca9903395MD53ORIGINALDISSERTAÇÃO Carlos Henrique Gonzaga de Oliveira Paiva.pdfDISSERTAÇÃO Carlos Henrique Gonzaga de Oliveira Paiva.pdfapplication/pdf755744https://repositorio.ufpe.br/bitstream/123456789/45026/1/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Gonzaga%20de%20Oliveira%20Paiva.pdf2ebdd010f592ebf325f3307de80d43dcMD51TEXTDISSERTAÇÃO Carlos Henrique Gonzaga de Oliveira Paiva.pdf.txtDISSERTAÇÃO Carlos Henrique Gonzaga de Oliveira Paiva.pdf.txtExtracted texttext/plain168153https://repositorio.ufpe.br/bitstream/123456789/45026/4/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Gonzaga%20de%20Oliveira%20Paiva.pdf.txt0fb7373aee1a47aee78bdc2bea1ba914MD54THUMBNAILDISSERTAÇÃO Carlos Henrique Gonzaga de Oliveira Paiva.pdf.jpgDISSERTAÇÃO Carlos Henrique Gonzaga de Oliveira Paiva.pdf.jpgGenerated Thumbnailimage/jpeg1243https://repositorio.ufpe.br/bitstream/123456789/45026/5/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Gonzaga%20de%20Oliveira%20Paiva.pdf.jpg0c64f3e2fc7f1ad34e3d1c30fb9376e4MD55123456789/450262022-07-08 02:19:11.567oai:repositorio.ufpe.br:123456789/45026VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-07-08T05:19:11Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
O grupo simplético na estabilidade de Gelfand-Lidskii |
title |
O grupo simplético na estabilidade de Gelfand-Lidskii |
spellingShingle |
O grupo simplético na estabilidade de Gelfand-Lidskii PAIVA, Carlos Henrique Gonzaga de Oliveira Análise Grupo simplético Teoremas de Krein-Gelfand-Lidskii Índice de Gelfand-Lidskii |
title_short |
O grupo simplético na estabilidade de Gelfand-Lidskii |
title_full |
O grupo simplético na estabilidade de Gelfand-Lidskii |
title_fullStr |
O grupo simplético na estabilidade de Gelfand-Lidskii |
title_full_unstemmed |
O grupo simplético na estabilidade de Gelfand-Lidskii |
title_sort |
O grupo simplético na estabilidade de Gelfand-Lidskii |
author |
PAIVA, Carlos Henrique Gonzaga de Oliveira |
author_facet |
PAIVA, Carlos Henrique Gonzaga de Oliveira |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6799632745672175 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0698732589703377 |
dc.contributor.author.fl_str_mv |
PAIVA, Carlos Henrique Gonzaga de Oliveira |
dc.contributor.advisor1.fl_str_mv |
CABRAL, Hildeberto Eulalio |
contributor_str_mv |
CABRAL, Hildeberto Eulalio |
dc.subject.por.fl_str_mv |
Análise Grupo simplético Teoremas de Krein-Gelfand-Lidskii Índice de Gelfand-Lidskii |
topic |
Análise Grupo simplético Teoremas de Krein-Gelfand-Lidskii Índice de Gelfand-Lidskii |
description |
Este trabalho tem como objetivo estudar o papel que o grupo simplético desempenha no estudo dos sistemas Hamiltonianos periódicos lineares fortemente estáveis. Para isso, iremos fazer uso de ideias desenvolvidas por Krein, Gelfand e Lidskii no século passado e recentemente trabalhadas sob um novo ponto de vista na referência [1]. Iremos identificar um sistema Hamiltoniano linear periódico fortemente estável x ̇ = A(t)x com a sua matriz A(t) que chamaremos de matriz fortemente estável. Relacionaremos a este sistema o índice de Gelfand- Lidskii n(A), que será a classe de homotopia do caminho fechado Q(t) no grupo fundamental do grupo simplético, onde Q(t) é a matriz periódica numa decomposição de Floquet X(t) = Q(t)etB do matrizante da equação x ̇ = A(t)x. Diremos que duas matrizes fortemente estáveis A1(t) e A2(t) estão no mesmo domínio de estabilidade se existir uma homotopia ligando ambas de modo que cada elemento da homotopia também seja uma matriz fortemente estável. O índice de Gelfand-Lidskii nos dará uma maneira de classificar os domínios de estabilidade. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-07-07T16:28:57Z |
dc.date.available.fl_str_mv |
2022-07-07T16:28:57Z |
dc.date.issued.fl_str_mv |
2022-02-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PAIVA, Carlos Henrique Gonzaga de Oliveira. O grupo simplético na estabilidade de Gelfand-Lidskii. 2022. Dissertação (Mestrado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/45026 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000qqcm |
identifier_str_mv |
PAIVA, Carlos Henrique Gonzaga de Oliveira. O grupo simplético na estabilidade de Gelfand-Lidskii. 2022. Dissertação (Mestrado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/001300000qqcm |
url |
https://repositorio.ufpe.br/handle/123456789/45026 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/45026/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/45026/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/45026/1/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Gonzaga%20de%20Oliveira%20Paiva.pdf https://repositorio.ufpe.br/bitstream/123456789/45026/4/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Gonzaga%20de%20Oliveira%20Paiva.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/45026/5/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Gonzaga%20de%20Oliveira%20Paiva.pdf.jpg |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 6928b9260b07fb2755249a5ca9903395 2ebdd010f592ebf325f3307de80d43dc 0fb7373aee1a47aee78bdc2bea1ba914 0c64f3e2fc7f1ad34e3d1c30fb9376e4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172888096931840 |