Contribuições ao estudo de equações diferenciais impulsivas

Detalhes bibliográficos
Autor(a) principal: GOMES, Milena Monique de Santana
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000s247
Texto Completo: https://repositorio.ufpe.br/handle/123456789/27115
Resumo: Estudamos propriedades oscilatórias das soluções de uma equação parabólica com impulso, investigando via o método de desigualdades diferenciais, o que nos encaminhou a estudar, principalmente Equações Diferencias com Impulso a fim de entendermos melhor o comportamento das soluções de tais equações quando em determinados instantes estão sujeitas a perturbações. Apresentamos os processos evolutivos que estão sob influência das ações impulsivas, discutindo resultados preliminares por meios de exemplos, de modo a deixar claro o que caracteriza um processo de evolução sujeito a efeitos impulsivos e a alguns fenômenos vindos de sistemas autônomos. Trataremos sobre a existência e continuidade locais de soluções, visto que pode ocorrer da equação diferencial impulsiva não ter solução, deixamos claro quais condições impor a fim de que garanta a existência local e continuidade. Além disso, as soluções de sistemas diferenciais impulsivos podem encontrar determinadas superfícies um número finito ou infinito de vezes, experimentando assim “batidas rítmicas”, as que nos trazem dificuldades no estudo das propriedades, que trataremos com muita atenção. Fazemos uma visitação a algumas desigualdades diferenciais impulsivas básicas, para por fim tratamos de oscilações das soluções de uma Equação Parabólica com Impulsos, tratando das condições suficientes para a oscilação das soluções de dois problemas principais, fazendo entender qualitativamente o comportamento oscilatório das soluções de uma equação parabólica impulsiva. Deixamos assim, uma contribuição ao analisar vários problemas, dados também como exemplos e desenvolvemos uma demonstração própria para um dos principais teoremas desse trabalho, dando assim uma visão reformulada para problemas de equações diferenciais com impulso.
id UFPE_41da920ea9a2acfc1dc8f677dd662f43
oai_identifier_str oai:repositorio.ufpe.br:123456789/27115
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling GOMES, Milena Monique de Santanahttp://lattes.cnpq.br/2653463709502198http://lattes.cnpq.br/1615361219032941CASTRO, Airton Temístocles Gonçalves de2018-09-28T20:25:19Z2018-09-28T20:25:19Z2016-07-29https://repositorio.ufpe.br/handle/123456789/27115ark:/64986/001300000s247Estudamos propriedades oscilatórias das soluções de uma equação parabólica com impulso, investigando via o método de desigualdades diferenciais, o que nos encaminhou a estudar, principalmente Equações Diferencias com Impulso a fim de entendermos melhor o comportamento das soluções de tais equações quando em determinados instantes estão sujeitas a perturbações. Apresentamos os processos evolutivos que estão sob influência das ações impulsivas, discutindo resultados preliminares por meios de exemplos, de modo a deixar claro o que caracteriza um processo de evolução sujeito a efeitos impulsivos e a alguns fenômenos vindos de sistemas autônomos. Trataremos sobre a existência e continuidade locais de soluções, visto que pode ocorrer da equação diferencial impulsiva não ter solução, deixamos claro quais condições impor a fim de que garanta a existência local e continuidade. Além disso, as soluções de sistemas diferenciais impulsivos podem encontrar determinadas superfícies um número finito ou infinito de vezes, experimentando assim “batidas rítmicas”, as que nos trazem dificuldades no estudo das propriedades, que trataremos com muita atenção. Fazemos uma visitação a algumas desigualdades diferenciais impulsivas básicas, para por fim tratamos de oscilações das soluções de uma Equação Parabólica com Impulsos, tratando das condições suficientes para a oscilação das soluções de dois problemas principais, fazendo entender qualitativamente o comportamento oscilatório das soluções de uma equação parabólica impulsiva. Deixamos assim, uma contribuição ao analisar vários problemas, dados também como exemplos e desenvolvemos uma demonstração própria para um dos principais teoremas desse trabalho, dando assim uma visão reformulada para problemas de equações diferenciais com impulso.CAPESWe studied oscillatory properties of the solutions of a impulsive parabolic differential equation, investigating via the differential inequality method, which led us to study mainly differential equations with Impulse in order to better understand the behavior of solutions of such equations when at certain moments they are subject to perturbations. We present evolutionary processes that are under the influence of impulsive actions, discussing preliminary results by means of examples, in order to make clear what characterizes a process of evolution subject to impulsive effects and some phenomena coming from autonomous systems. We will deal with the local existence and continuity of solutions, since it may occur that the impulsive differential equation has no solution, we make clear which conditions to impose in order to guarantee local existence and continuity. Moreover, solutions of impulsive differential systems can find certain surfaces a finite or infinite number of times, thus experiencing "rhythmic beats", which bring us difficulties in the study of properties, which we will treat very carefully. We make a visitation to some basic impulsive differential inequalities, for finally we deal with oscillations of the solutions of a Parabolic Equation with Impulses, treating the sufficient conditions for the oscillation of the solutions of two main problems, making qualitatively understand the oscillatory behavior of the solutions of an equation parabolic impulsive. We thus leave a contribution by analyzing various problems, also given as examples and developing a proper demonstration for one of the main theorems of this work, thus giving a reformulated view to problems of differential equations with momentum.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMatemáticaEquações diferenciais impulsivasContribuições ao estudo de equações diferenciais impulsivasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Milena Monique de Santana Gomes.pdf.jpgDISSERTAÇÃO Milena Monique de Santana Gomes.pdf.jpgGenerated Thumbnailimage/jpeg1336https://repositorio.ufpe.br/bitstream/123456789/27115/5/DISSERTA%c3%87%c3%83O%20Milena%20Monique%20de%20Santana%20Gomes.pdf.jpg386ab86a7ea6a7933c40baeb6689d4b4MD55ORIGINALDISSERTAÇÃO Milena Monique de Santana Gomes.pdfDISSERTAÇÃO Milena Monique de Santana Gomes.pdfapplication/pdf1660637https://repositorio.ufpe.br/bitstream/123456789/27115/1/DISSERTA%c3%87%c3%83O%20Milena%20Monique%20de%20Santana%20Gomes.pdf6b82b9382d84bf949afbe743eecb76e7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/27115/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/27115/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Milena Monique de Santana Gomes.pdf.txtDISSERTAÇÃO Milena Monique de Santana Gomes.pdf.txtExtracted texttext/plain93302https://repositorio.ufpe.br/bitstream/123456789/27115/4/DISSERTA%c3%87%c3%83O%20Milena%20Monique%20de%20Santana%20Gomes.pdf.txt34a31f96b5256bfa65d0e75357ef1fe7MD54123456789/271152019-10-26 00:18:36.726oai:repositorio.ufpe.br:123456789/27115TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T03:18:36Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Contribuições ao estudo de equações diferenciais impulsivas
title Contribuições ao estudo de equações diferenciais impulsivas
spellingShingle Contribuições ao estudo de equações diferenciais impulsivas
GOMES, Milena Monique de Santana
Matemática
Equações diferenciais impulsivas
title_short Contribuições ao estudo de equações diferenciais impulsivas
title_full Contribuições ao estudo de equações diferenciais impulsivas
title_fullStr Contribuições ao estudo de equações diferenciais impulsivas
title_full_unstemmed Contribuições ao estudo de equações diferenciais impulsivas
title_sort Contribuições ao estudo de equações diferenciais impulsivas
author GOMES, Milena Monique de Santana
author_facet GOMES, Milena Monique de Santana
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2653463709502198
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1615361219032941
dc.contributor.author.fl_str_mv GOMES, Milena Monique de Santana
dc.contributor.advisor1.fl_str_mv CASTRO, Airton Temístocles Gonçalves de
contributor_str_mv CASTRO, Airton Temístocles Gonçalves de
dc.subject.por.fl_str_mv Matemática
Equações diferenciais impulsivas
topic Matemática
Equações diferenciais impulsivas
description Estudamos propriedades oscilatórias das soluções de uma equação parabólica com impulso, investigando via o método de desigualdades diferenciais, o que nos encaminhou a estudar, principalmente Equações Diferencias com Impulso a fim de entendermos melhor o comportamento das soluções de tais equações quando em determinados instantes estão sujeitas a perturbações. Apresentamos os processos evolutivos que estão sob influência das ações impulsivas, discutindo resultados preliminares por meios de exemplos, de modo a deixar claro o que caracteriza um processo de evolução sujeito a efeitos impulsivos e a alguns fenômenos vindos de sistemas autônomos. Trataremos sobre a existência e continuidade locais de soluções, visto que pode ocorrer da equação diferencial impulsiva não ter solução, deixamos claro quais condições impor a fim de que garanta a existência local e continuidade. Além disso, as soluções de sistemas diferenciais impulsivos podem encontrar determinadas superfícies um número finito ou infinito de vezes, experimentando assim “batidas rítmicas”, as que nos trazem dificuldades no estudo das propriedades, que trataremos com muita atenção. Fazemos uma visitação a algumas desigualdades diferenciais impulsivas básicas, para por fim tratamos de oscilações das soluções de uma Equação Parabólica com Impulsos, tratando das condições suficientes para a oscilação das soluções de dois problemas principais, fazendo entender qualitativamente o comportamento oscilatório das soluções de uma equação parabólica impulsiva. Deixamos assim, uma contribuição ao analisar vários problemas, dados também como exemplos e desenvolvemos uma demonstração própria para um dos principais teoremas desse trabalho, dando assim uma visão reformulada para problemas de equações diferenciais com impulso.
publishDate 2016
dc.date.issued.fl_str_mv 2016-07-29
dc.date.accessioned.fl_str_mv 2018-09-28T20:25:19Z
dc.date.available.fl_str_mv 2018-09-28T20:25:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/27115
dc.identifier.dark.fl_str_mv ark:/64986/001300000s247
url https://repositorio.ufpe.br/handle/123456789/27115
identifier_str_mv ark:/64986/001300000s247
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Matematica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/27115/5/DISSERTA%c3%87%c3%83O%20Milena%20Monique%20de%20Santana%20Gomes.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/27115/1/DISSERTA%c3%87%c3%83O%20Milena%20Monique%20de%20Santana%20Gomes.pdf
https://repositorio.ufpe.br/bitstream/123456789/27115/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/27115/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/27115/4/DISSERTA%c3%87%c3%83O%20Milena%20Monique%20de%20Santana%20Gomes.pdf.txt
bitstream.checksum.fl_str_mv 386ab86a7ea6a7933c40baeb6689d4b4
6b82b9382d84bf949afbe743eecb76e7
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
34a31f96b5256bfa65d0e75357ef1fe7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172901617270784