Resolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícito
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000004hgk |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/18661 |
Resumo: | Pesquisas em Psicologia da Educação Matemática apontam algumas das dificuldades que as crianças apresentam em relação às estruturas multiplicativas. Por isso, o presente estudo investigou, se e como, a noção de agrupamento explícito poderia favorecer o raciocínio matemático das crianças na resolução de problemas de multiplicação e divisão (partição e quota) de proporção simples de um-para-muitos. De forma específica, investigou as estratégias utilizadas pelas crianças para resolver essa classe de problemas, buscando observar se algum tipo de problema desse agrupamento explícito favoreceu a resolução, como também analisar a maneira na qual a criança lida com os problemas que possui o agrupamento implícito. Para tanto, a dissertação se fundamenta nas ideias de Jean Piaget para discorrer sobre o desenvolvimento cognitivo e a construção de conceitos, e no campo da Matemática, na Teoria dos Campos Conceituais apresentada por Gérard Vergnaud. Participaram dessa pesquisa 119 crianças, de ambos os sexos, com idades entre 6 e 11 anos, cursando 2º ano, 3º ano, 4º ano e 5º ano, do Ensino Fundamental (anos iniciais) de escolas públicas da cidade do Recife. Todos os participantes foram entrevistados individualmente em duas sessões, sendo solicitados a resolver seis problemas em cada sessão, totalizando doze problemas, envolvendo o agrupamento explícito e implícito. Após aplicação das tarefas foi realizada uma entrevista individual, seguindo o método clínico piagetiano, onde foi solicitado ao participante que explicasse a estratégia utilizada na resolução dos problemas apresentados. Os dados foram analisados em função do número de acertos e das estratégias utilizadas. De modo geral, os resultados mostraram que não houve diferença significativa nos problemas de agrupamento explícito, quando comparado aos de agrupamento implícito. Isso talvez tenha ocorrido devido há algumas limitações encontradas na pesquisa. Entretanto, no que diz respeito aos participantes do 2º ano foi verificada uma diferença significativa nos problemas de divisão por quota, contendo o agrupamento explícito, quando comparado aos problemas de partição. Mas apesar do dado encontrado não é possível afirmar com precisão que esse tipo de agrupamento tenha favorecido, uma vez que pesquisas anteriores demonstram que as crianças tendem a apresentar melhores resultados na resolução nos problemas de divisão por quota. As estratégias foram analisadas, considerando a pesquisa realizada por Magina, Santos e Merlini (2010) e por Chagas (2011), sendo, detectados quatro tipos de respostas, a saber: inconsistente, pensamento aditivo, transição e pensamento multiplicativo. O teste aplicado em relação às estratégias não detectou diferenças significativas nos diferentes tipos de agrupamento, considerando os anos investigados. Conclui-se que o agrupamento explícito não favorece no raciocínio das crianças na resolução de problemas de multiplicação e divisão (partição), de proporção simples de um-para-muitos. No entanto, o fato de ter encontrado uma diferença na resolução dos problemas de divisão por quota de agrupamento explícito, nos estudantes do 2º ano, faz com que se pense na possibilidade de realizar outro estudo mais detalhado, contendo um maior número de problemas e de participantes para de verificar se realmente há diferença, visto que não é possível afirmar a diferença na atual pesquisa. |
id |
UFPE_64e65f4db66b1702c029711d9f22ff1a |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/18661 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
CHAGAS, Fernanda Augusta Lima dashttp://lattes.cnpq.br/9380193581845606http://lattes.cnpq.br/1825422952986771LAUTERT, Síntria Labres2017-04-27T13:26:27Z2017-04-27T13:26:27Z2014-02-26https://repositorio.ufpe.br/handle/123456789/18661ark:/64986/0013000004hgkPesquisas em Psicologia da Educação Matemática apontam algumas das dificuldades que as crianças apresentam em relação às estruturas multiplicativas. Por isso, o presente estudo investigou, se e como, a noção de agrupamento explícito poderia favorecer o raciocínio matemático das crianças na resolução de problemas de multiplicação e divisão (partição e quota) de proporção simples de um-para-muitos. De forma específica, investigou as estratégias utilizadas pelas crianças para resolver essa classe de problemas, buscando observar se algum tipo de problema desse agrupamento explícito favoreceu a resolução, como também analisar a maneira na qual a criança lida com os problemas que possui o agrupamento implícito. Para tanto, a dissertação se fundamenta nas ideias de Jean Piaget para discorrer sobre o desenvolvimento cognitivo e a construção de conceitos, e no campo da Matemática, na Teoria dos Campos Conceituais apresentada por Gérard Vergnaud. Participaram dessa pesquisa 119 crianças, de ambos os sexos, com idades entre 6 e 11 anos, cursando 2º ano, 3º ano, 4º ano e 5º ano, do Ensino Fundamental (anos iniciais) de escolas públicas da cidade do Recife. Todos os participantes foram entrevistados individualmente em duas sessões, sendo solicitados a resolver seis problemas em cada sessão, totalizando doze problemas, envolvendo o agrupamento explícito e implícito. Após aplicação das tarefas foi realizada uma entrevista individual, seguindo o método clínico piagetiano, onde foi solicitado ao participante que explicasse a estratégia utilizada na resolução dos problemas apresentados. Os dados foram analisados em função do número de acertos e das estratégias utilizadas. De modo geral, os resultados mostraram que não houve diferença significativa nos problemas de agrupamento explícito, quando comparado aos de agrupamento implícito. Isso talvez tenha ocorrido devido há algumas limitações encontradas na pesquisa. Entretanto, no que diz respeito aos participantes do 2º ano foi verificada uma diferença significativa nos problemas de divisão por quota, contendo o agrupamento explícito, quando comparado aos problemas de partição. Mas apesar do dado encontrado não é possível afirmar com precisão que esse tipo de agrupamento tenha favorecido, uma vez que pesquisas anteriores demonstram que as crianças tendem a apresentar melhores resultados na resolução nos problemas de divisão por quota. As estratégias foram analisadas, considerando a pesquisa realizada por Magina, Santos e Merlini (2010) e por Chagas (2011), sendo, detectados quatro tipos de respostas, a saber: inconsistente, pensamento aditivo, transição e pensamento multiplicativo. O teste aplicado em relação às estratégias não detectou diferenças significativas nos diferentes tipos de agrupamento, considerando os anos investigados. Conclui-se que o agrupamento explícito não favorece no raciocínio das crianças na resolução de problemas de multiplicação e divisão (partição), de proporção simples de um-para-muitos. No entanto, o fato de ter encontrado uma diferença na resolução dos problemas de divisão por quota de agrupamento explícito, nos estudantes do 2º ano, faz com que se pense na possibilidade de realizar outro estudo mais detalhado, contendo um maior número de problemas e de participantes para de verificar se realmente há diferença, visto que não é possível afirmar a diferença na atual pesquisa.FACEPEResearch in Psychology of Mathematics Education point out the difficulties that children have in relation to the multiplicative structures. This study had as general objective investigate if and how the explicit grouping can influence in the logic of the students in the resolution of multiplication and division problems (partition and share) of simple proportion from one-to-many. Specifically, we investigated the strategies used by children to solve this class of problems, trying to see if any problems that explicit grouping favored the resolution, but also examine the way in which the child deals with the problems that have the implicit grouping. Therefore, the dissertation is based on Jean Piaget ideas to discuss cognitive development and the construction of concepts, and in the field of Mathematics, Theory of Conceptual Fields by Gérard Vergnaud. Participated in this study 119 children of both sexes, aged between 6 and 11 years old, attend classes 2º grade, 3º grade, 4º grade and 5º grade, of Elementary Education (first years) of public schools from Recife. All the participants were interviewed individually in two sessions, being order to resolve six problems in each session, totalizing 12 problems, involving the idea of explicit grouping and implicit grouping. After the problems application it was make an individual interview, following Piaget clinical methods, which was order that the participant explain the strategy used in the resolution of presented problems. The data were analyzed in function of correct numbers and follow strategies. In general, the results showed no significant differences in explicit grouping problems, when compare with implicit grouping. This maybe happen because there are some limitations found in the search. However, about the participants of 2º grade it was observed a significant difference in share by division problems, the explicit containing group when compared to partitioning problems. But even with this data is not possible to state precisely that type of grouping has favored, since previous research has shown that children tend to have better results in solving problems in the division by quota. About the strategies were analyzed considering the research made by Magina, Santos and Merlini (2010) and by Chagas (2011) and it was found four types of answers, to know: inconsistent, additive thought, transition and multiply thought. The test applied in relation to the strategies did not detect significant differences in the different types of grouping, considering the years investigated. It concluded that the explicit grouping doesn´t influence the children logical in resolution of multiplication and division problems (partition) of simple proportion from one-to-many. However, the fact of having found a significant difference in solving division problems by explicit grouping share, the students of 2º grade, makes you think of the possibility of carrying out a more detailed study, containing a large number of problems and participants to check if there really is a difference, since it is not possible to state the difference in current research.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Psicologia CognitivaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEstrutura MultiplicativaMultiplicaçãoDivisãoEnsino FundamentalAgrupamento ExplícitoAgrupamento ImplícitoMultiplicative StructureMultiplicationDivisionElementary EducationExplicit GroupingImplicit GroupingResolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícitoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertação_Fernanda_Augusta_Lima_das_Chagas.pdf.jpgDissertação_Fernanda_Augusta_Lima_das_Chagas.pdf.jpgGenerated Thumbnailimage/jpeg1192https://repositorio.ufpe.br/bitstream/123456789/18661/5/Disserta%c3%a7%c3%a3o_Fernanda_Augusta_Lima_das_Chagas.pdf.jpgeb117ca5041ac31538ea7b93ece4014eMD55ORIGINALDissertação_Fernanda_Augusta_Lima_das_Chagas.pdfDissertação_Fernanda_Augusta_Lima_das_Chagas.pdfapplication/pdf1669768https://repositorio.ufpe.br/bitstream/123456789/18661/1/Disserta%c3%a7%c3%a3o_Fernanda_Augusta_Lima_das_Chagas.pdfaaa8a92bffbeb14e628c00eb4fc9283bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/18661/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/18661/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDissertação_Fernanda_Augusta_Lima_das_Chagas.pdf.txtDissertação_Fernanda_Augusta_Lima_das_Chagas.pdf.txtExtracted texttext/plain175857https://repositorio.ufpe.br/bitstream/123456789/18661/4/Disserta%c3%a7%c3%a3o_Fernanda_Augusta_Lima_das_Chagas.pdf.txt837d98bd70cddb9df5e0efb8c46a17e9MD54123456789/186612019-10-25 23:09:21.525oai:repositorio.ufpe.br:123456789/18661TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T02:09:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Resolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícito |
title |
Resolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícito |
spellingShingle |
Resolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícito CHAGAS, Fernanda Augusta Lima das Estrutura Multiplicativa Multiplicação Divisão Ensino Fundamental Agrupamento Explícito Agrupamento Implícito Multiplicative Structure Multiplication Division Elementary Education Explicit Grouping Implicit Grouping |
title_short |
Resolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícito |
title_full |
Resolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícito |
title_fullStr |
Resolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícito |
title_full_unstemmed |
Resolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícito |
title_sort |
Resolvendo problemas de multiplicação e divisão envolvendo o agrupamento explícito e implícito |
author |
CHAGAS, Fernanda Augusta Lima das |
author_facet |
CHAGAS, Fernanda Augusta Lima das |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9380193581845606 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1825422952986771 |
dc.contributor.author.fl_str_mv |
CHAGAS, Fernanda Augusta Lima das |
dc.contributor.advisor1.fl_str_mv |
LAUTERT, Síntria Labres |
contributor_str_mv |
LAUTERT, Síntria Labres |
dc.subject.por.fl_str_mv |
Estrutura Multiplicativa Multiplicação Divisão Ensino Fundamental Agrupamento Explícito Agrupamento Implícito Multiplicative Structure Multiplication Division Elementary Education Explicit Grouping Implicit Grouping |
topic |
Estrutura Multiplicativa Multiplicação Divisão Ensino Fundamental Agrupamento Explícito Agrupamento Implícito Multiplicative Structure Multiplication Division Elementary Education Explicit Grouping Implicit Grouping |
description |
Pesquisas em Psicologia da Educação Matemática apontam algumas das dificuldades que as crianças apresentam em relação às estruturas multiplicativas. Por isso, o presente estudo investigou, se e como, a noção de agrupamento explícito poderia favorecer o raciocínio matemático das crianças na resolução de problemas de multiplicação e divisão (partição e quota) de proporção simples de um-para-muitos. De forma específica, investigou as estratégias utilizadas pelas crianças para resolver essa classe de problemas, buscando observar se algum tipo de problema desse agrupamento explícito favoreceu a resolução, como também analisar a maneira na qual a criança lida com os problemas que possui o agrupamento implícito. Para tanto, a dissertação se fundamenta nas ideias de Jean Piaget para discorrer sobre o desenvolvimento cognitivo e a construção de conceitos, e no campo da Matemática, na Teoria dos Campos Conceituais apresentada por Gérard Vergnaud. Participaram dessa pesquisa 119 crianças, de ambos os sexos, com idades entre 6 e 11 anos, cursando 2º ano, 3º ano, 4º ano e 5º ano, do Ensino Fundamental (anos iniciais) de escolas públicas da cidade do Recife. Todos os participantes foram entrevistados individualmente em duas sessões, sendo solicitados a resolver seis problemas em cada sessão, totalizando doze problemas, envolvendo o agrupamento explícito e implícito. Após aplicação das tarefas foi realizada uma entrevista individual, seguindo o método clínico piagetiano, onde foi solicitado ao participante que explicasse a estratégia utilizada na resolução dos problemas apresentados. Os dados foram analisados em função do número de acertos e das estratégias utilizadas. De modo geral, os resultados mostraram que não houve diferença significativa nos problemas de agrupamento explícito, quando comparado aos de agrupamento implícito. Isso talvez tenha ocorrido devido há algumas limitações encontradas na pesquisa. Entretanto, no que diz respeito aos participantes do 2º ano foi verificada uma diferença significativa nos problemas de divisão por quota, contendo o agrupamento explícito, quando comparado aos problemas de partição. Mas apesar do dado encontrado não é possível afirmar com precisão que esse tipo de agrupamento tenha favorecido, uma vez que pesquisas anteriores demonstram que as crianças tendem a apresentar melhores resultados na resolução nos problemas de divisão por quota. As estratégias foram analisadas, considerando a pesquisa realizada por Magina, Santos e Merlini (2010) e por Chagas (2011), sendo, detectados quatro tipos de respostas, a saber: inconsistente, pensamento aditivo, transição e pensamento multiplicativo. O teste aplicado em relação às estratégias não detectou diferenças significativas nos diferentes tipos de agrupamento, considerando os anos investigados. Conclui-se que o agrupamento explícito não favorece no raciocínio das crianças na resolução de problemas de multiplicação e divisão (partição), de proporção simples de um-para-muitos. No entanto, o fato de ter encontrado uma diferença na resolução dos problemas de divisão por quota de agrupamento explícito, nos estudantes do 2º ano, faz com que se pense na possibilidade de realizar outro estudo mais detalhado, contendo um maior número de problemas e de participantes para de verificar se realmente há diferença, visto que não é possível afirmar a diferença na atual pesquisa. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-02-26 |
dc.date.accessioned.fl_str_mv |
2017-04-27T13:26:27Z |
dc.date.available.fl_str_mv |
2017-04-27T13:26:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/18661 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000004hgk |
url |
https://repositorio.ufpe.br/handle/123456789/18661 |
identifier_str_mv |
ark:/64986/0013000004hgk |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Psicologia Cognitiva |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/18661/5/Disserta%c3%a7%c3%a3o_Fernanda_Augusta_Lima_das_Chagas.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/18661/1/Disserta%c3%a7%c3%a3o_Fernanda_Augusta_Lima_das_Chagas.pdf https://repositorio.ufpe.br/bitstream/123456789/18661/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/18661/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/18661/4/Disserta%c3%a7%c3%a3o_Fernanda_Augusta_Lima_das_Chagas.pdf.txt |
bitstream.checksum.fl_str_mv |
eb117ca5041ac31538ea7b93ece4014e aaa8a92bffbeb14e628c00eb4fc9283b 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 837d98bd70cddb9df5e0efb8c46a17e9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172720451649536 |