Well-posedness and stabilization theory for dispersive systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000007vvx |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/52008 |
Resumo: | This work deals with the study of the well-posedness and stabilization of nonlinear disper- sive equations in bounded domains. We start by proving Massera-type theorems for the nonlinear Kawahara equation. More precisely, thanks to the properties of the semigroup of the linear operator associated with the equation studied and the exponential decay of the solutions of the linear system, it was possible to show that the solutions of the Kawahara equation are periodic and quasi-periodic. In a second moment, we study the stabilization problems of this same equation. Precisely, by introducing only one term of infinite memory in the Kawahara equation, which played a role as a damping mechanism, we guarantee the exponential stability of the system solutions. Furthermore, by designing a boundary feedback law for the Kawahara system, which combines a damping term and a finite memory term, we show that the energy associated with this system, with the presence of this feedback law, decays exponentially. Finally, we study another equation, namely, the fourth-order linear Schrödinger equation or biharmonic Schrödinger equa- tion. Here, adding an infinite memory term, we prove that the energy associated with this equation decays at polynomial-type rates. |
id |
UFPE_66c319823c1002498bac37d18fa17071 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/52008 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
JESUS, Isadora Maria dehttp://lattes.cnpq.br/4902162993813481http://lattes.cnpq.br/6438759947793346CAPISTRANO FILHO, Roberto de Almeida2023-08-22T11:56:16Z2023-08-22T11:56:16Z2023-07-28JESUS, Isadora Maria de. Well-posedness and stabilization theory for dispersive systems. 2023. Tese (Doutorado em Matemática) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/52008ark:/64986/0013000007vvxThis work deals with the study of the well-posedness and stabilization of nonlinear disper- sive equations in bounded domains. We start by proving Massera-type theorems for the nonlinear Kawahara equation. More precisely, thanks to the properties of the semigroup of the linear operator associated with the equation studied and the exponential decay of the solutions of the linear system, it was possible to show that the solutions of the Kawahara equation are periodic and quasi-periodic. In a second moment, we study the stabilization problems of this same equation. Precisely, by introducing only one term of infinite memory in the Kawahara equation, which played a role as a damping mechanism, we guarantee the exponential stability of the system solutions. Furthermore, by designing a boundary feedback law for the Kawahara system, which combines a damping term and a finite memory term, we show that the energy associated with this system, with the presence of this feedback law, decays exponentially. Finally, we study another equation, namely, the fourth-order linear Schrödinger equation or biharmonic Schrödinger equa- tion. Here, adding an infinite memory term, we prove that the energy associated with this equation decays at polynomial-type rates.Este trabalho trata do estudo da boa colocação e estabilização de equações dispersivas não lineares em domínios limitados. Iniciamos provando teoremas do tipo Massera para a equação de Kawahara não linear. Mais precisamente, graças às propriedades do semi- grupo do operador linear associado à equação estudada e ao decaimento exponencial das soluções do sistema linear, foi possível mostrar que as soluções da equação de Kawahara são periódicas e quase periódicas. Em um segundo momento, estudamos problemas de estabilização desta mesma equação. Precisamente, introduzindo somente um termo de memória infinita na equação de Kawahara, que desempenhou um papel de mecanismo de amortecimento, garantimos a estabilidade exponencial das soluções do sistema. Além disso, projetando uma lei de feedback de fronteira para o sistema de Kawahara, que com- bina um termo de amortecimento e um termo de memória finita, mostramos que a energia associada a este sistema, com a presença desta lei de feedback, decai exponencialmente. Por fim, estudamos uma outra equação, a saber, equação linear de Schrödinger de quarta or- dem ou equação biharmônica de Schrödinger. Aqui, acrescentando um termo de memória infinita, provamos que a energia desta equação decai em taxas do tipo polinomial.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessAnáliseEquação de KawaharaTeoremas do tipo MasseraWell-posedness and stabilization theory for dispersive systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Isadora Maria de Jesus.pdfTESE Isadora Maria de Jesus.pdfapplication/pdf1238690https://repositorio.ufpe.br/bitstream/123456789/52008/1/TESE%20Isadora%20Maria%20de%20Jesus.pdf623b46a520aa184a367fe736aaa147dbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/52008/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/52008/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Isadora Maria de Jesus.pdf.txtTESE Isadora Maria de Jesus.pdf.txtExtracted texttext/plain262195https://repositorio.ufpe.br/bitstream/123456789/52008/4/TESE%20Isadora%20Maria%20de%20Jesus.pdf.txtacd1f14e2eb5be4ae224cb7c34901f8eMD54THUMBNAILTESE Isadora Maria de Jesus.pdf.jpgTESE Isadora Maria de Jesus.pdf.jpgGenerated Thumbnailimage/jpeg1229https://repositorio.ufpe.br/bitstream/123456789/52008/5/TESE%20Isadora%20Maria%20de%20Jesus.pdf.jpg894e0db7eca20753dbd7902ff5aedca2MD55123456789/520082023-08-23 02:17:17.697oai:repositorio.ufpe.br:123456789/52008VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-08-23T05:17:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Well-posedness and stabilization theory for dispersive systems |
title |
Well-posedness and stabilization theory for dispersive systems |
spellingShingle |
Well-posedness and stabilization theory for dispersive systems JESUS, Isadora Maria de Análise Equação de Kawahara Teoremas do tipo Massera |
title_short |
Well-posedness and stabilization theory for dispersive systems |
title_full |
Well-posedness and stabilization theory for dispersive systems |
title_fullStr |
Well-posedness and stabilization theory for dispersive systems |
title_full_unstemmed |
Well-posedness and stabilization theory for dispersive systems |
title_sort |
Well-posedness and stabilization theory for dispersive systems |
author |
JESUS, Isadora Maria de |
author_facet |
JESUS, Isadora Maria de |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/4902162993813481 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6438759947793346 |
dc.contributor.author.fl_str_mv |
JESUS, Isadora Maria de |
dc.contributor.advisor1.fl_str_mv |
CAPISTRANO FILHO, Roberto de Almeida |
contributor_str_mv |
CAPISTRANO FILHO, Roberto de Almeida |
dc.subject.por.fl_str_mv |
Análise Equação de Kawahara Teoremas do tipo Massera |
topic |
Análise Equação de Kawahara Teoremas do tipo Massera |
description |
This work deals with the study of the well-posedness and stabilization of nonlinear disper- sive equations in bounded domains. We start by proving Massera-type theorems for the nonlinear Kawahara equation. More precisely, thanks to the properties of the semigroup of the linear operator associated with the equation studied and the exponential decay of the solutions of the linear system, it was possible to show that the solutions of the Kawahara equation are periodic and quasi-periodic. In a second moment, we study the stabilization problems of this same equation. Precisely, by introducing only one term of infinite memory in the Kawahara equation, which played a role as a damping mechanism, we guarantee the exponential stability of the system solutions. Furthermore, by designing a boundary feedback law for the Kawahara system, which combines a damping term and a finite memory term, we show that the energy associated with this system, with the presence of this feedback law, decays exponentially. Finally, we study another equation, namely, the fourth-order linear Schrödinger equation or biharmonic Schrödinger equa- tion. Here, adding an infinite memory term, we prove that the energy associated with this equation decays at polynomial-type rates. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-08-22T11:56:16Z |
dc.date.available.fl_str_mv |
2023-08-22T11:56:16Z |
dc.date.issued.fl_str_mv |
2023-07-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
JESUS, Isadora Maria de. Well-posedness and stabilization theory for dispersive systems. 2023. Tese (Doutorado em Matemática) – Universidade Federal de Pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/52008 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000007vvx |
identifier_str_mv |
JESUS, Isadora Maria de. Well-posedness and stabilization theory for dispersive systems. 2023. Tese (Doutorado em Matemática) – Universidade Federal de Pernambuco, Recife, 2023. ark:/64986/0013000007vvx |
url |
https://repositorio.ufpe.br/handle/123456789/52008 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/52008/1/TESE%20Isadora%20Maria%20de%20Jesus.pdf https://repositorio.ufpe.br/bitstream/123456789/52008/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/52008/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/52008/4/TESE%20Isadora%20Maria%20de%20Jesus.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/52008/5/TESE%20Isadora%20Maria%20de%20Jesus.pdf.jpg |
bitstream.checksum.fl_str_mv |
623b46a520aa184a367fe736aaa147db e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 acd1f14e2eb5be4ae224cb7c34901f8e 894e0db7eca20753dbd7902ff5aedca2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172753660051456 |