Inference and diagnostics in spatial models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000008tdt |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/17304 |
Resumo: | In this work, we present inference and diagnostics in spatial models. Firstly, we extend the Gaussian spatial linear model for the elliptical spatial linear models, and present the local influence methodology to assess the sensitivity of the maximum likelihood estimators to small perturbations in the data and/or the spatial linear model assumptions. Secondly, we consider the Gaussian spatial linear models with repetitions. We obtain in matrix notation a Bartlett correction factor for the profiled likelihood ratio statistic. We also present inference approach to estimate the smooth parameter from the Mat´ern family class of models. The maximum likelihood estimators are obtained, and an explicit expression for the Fisher information matrix is also presented, even when the smooth parameter for Mat´ern class of covariance structure is estimated. We present local and global influence diagnostics techniques to assess the influence of observations on Gaussian spatial linear models with repetitions. We review concepts of Cook’s distance and generalized leverage and extend it. For local influence we consider two different approach and for both we consider appropriated perturbation in the response variable and case weight perturbation. Finally, we describe the modeling and fitting of Markov random field spatial components within the generalized additive models for locations scale and shape framework. This allows modeling any or all of the parameters of the distribution for the response variable using explanatory variables and spatial effects. We present some simulations and real data sets illustrate the methodology. |
id |
UFPE_6ceb662a6af6437612acea236631f476 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/17304 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
DE BASTIANI, FernandaCYSNEIROS, Audrey Helen Mariz de AquinoOPAZO, Miguel Angel Uribe2016-07-08T18:44:40Z2016-07-08T18:44:40Z2016-02-22https://repositorio.ufpe.br/handle/123456789/17304ark:/64986/0013000008tdtIn this work, we present inference and diagnostics in spatial models. Firstly, we extend the Gaussian spatial linear model for the elliptical spatial linear models, and present the local influence methodology to assess the sensitivity of the maximum likelihood estimators to small perturbations in the data and/or the spatial linear model assumptions. Secondly, we consider the Gaussian spatial linear models with repetitions. We obtain in matrix notation a Bartlett correction factor for the profiled likelihood ratio statistic. We also present inference approach to estimate the smooth parameter from the Mat´ern family class of models. The maximum likelihood estimators are obtained, and an explicit expression for the Fisher information matrix is also presented, even when the smooth parameter for Mat´ern class of covariance structure is estimated. We present local and global influence diagnostics techniques to assess the influence of observations on Gaussian spatial linear models with repetitions. We review concepts of Cook’s distance and generalized leverage and extend it. For local influence we consider two different approach and for both we consider appropriated perturbation in the response variable and case weight perturbation. Finally, we describe the modeling and fitting of Markov random field spatial components within the generalized additive models for locations scale and shape framework. This allows modeling any or all of the parameters of the distribution for the response variable using explanatory variables and spatial effects. We present some simulations and real data sets illustrate the methodology.FACEPENeste trabalho, apresentamos inferência e diagnósticos para modelos espaciais. Inicialmente, os modelos espaciais lineares Gaussianos são estendidos para os modelos espaciais lineares elípticos, e desenvolve-se a metodologia de influência local para avaliar a sensibilidade dos estimadores de máxima verossimilhança para pequenas perturbações nos dados e/ou nos pressupostos do modelo. Posteriormente, considera-se os modelos espaciais lineares Gaussianos com repetições. Para estes modelos obteve-se em notação matricial um fator de correção de Bartlett para a estatística da razão de verossimilhanças perfiladas. E também realizada inferência para estimar o parâmetro de suavização da classe de modelos da família Matérn. Os estimadores de máxima verossimilhança são obtidos, e uma expressão explícita para a matriz de informação de Fisher e apresentada, mesmo quando o parâmetro de suavização da classe de modelos da família Matérn da estrutura de covariância _e estimado. Desenvolve-se técnicas de diagnósticos de influência local e global para avaliar a influência de observações em modelos espaciais lineares Gaussianos com repetições. Os conceitos de distância de Cook e alavanca generalizada são revisados e estendidos para estes modelos. Para influência local são consideradas perturbações apropriadas na variável resposta e ponderação de casos. Finalmente, é descrita a modelagem para os componentes espaciais dos campos aleatórios Markovianos nos modelos aditivos generalizados de locação escala e forma. Isto permite modelar qualquer ou todos os parâmetros da distribuição para a variável resposta utilizando as variáveis explanatórias e efeitos espaciais. Alguns estudos de simulações são apresentados e as metodologias são ilustradas com conjuntos de dados reais.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessProcessos estocásticos.Estatística espacialModelos de regressão.Inferência estatísticaInference and diagnostics in spatial modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Fernanda De Bastiani.pdf.jpgTESE Fernanda De Bastiani.pdf.jpgGenerated Thumbnailimage/jpeg1257https://repositorio.ufpe.br/bitstream/123456789/17304/5/TESE%20Fernanda%20De%20Bastiani.pdf.jpg948c80a89d8eb2e95f5b720158c67aa0MD55ORIGINALTESE Fernanda De Bastiani.pdfTESE Fernanda De Bastiani.pdfapplication/pdf4258341https://repositorio.ufpe.br/bitstream/123456789/17304/1/TESE%20Fernanda%20De%20Bastiani.pdf8f146a8d3dfa9d213e65c7506719ad53MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17304/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17304/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Fernanda De Bastiani.pdf.txtTESE Fernanda De Bastiani.pdf.txtExtracted texttext/plain286868https://repositorio.ufpe.br/bitstream/123456789/17304/4/TESE%20Fernanda%20De%20Bastiani.pdf.txtdb380f89de64a89d4ce5044903d2b96bMD54123456789/173042019-10-25 19:08:58.903oai:repositorio.ufpe.br:123456789/17304TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T22:08:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Inference and diagnostics in spatial models |
title |
Inference and diagnostics in spatial models |
spellingShingle |
Inference and diagnostics in spatial models DE BASTIANI, Fernanda Processos estocásticos. Estatística espacial Modelos de regressão. Inferência estatística |
title_short |
Inference and diagnostics in spatial models |
title_full |
Inference and diagnostics in spatial models |
title_fullStr |
Inference and diagnostics in spatial models |
title_full_unstemmed |
Inference and diagnostics in spatial models |
title_sort |
Inference and diagnostics in spatial models |
author |
DE BASTIANI, Fernanda |
author_facet |
DE BASTIANI, Fernanda |
author_role |
author |
dc.contributor.author.fl_str_mv |
DE BASTIANI, Fernanda |
dc.contributor.advisor1.fl_str_mv |
CYSNEIROS, Audrey Helen Mariz de Aquino |
dc.contributor.advisor-co1.fl_str_mv |
OPAZO, Miguel Angel Uribe |
contributor_str_mv |
CYSNEIROS, Audrey Helen Mariz de Aquino OPAZO, Miguel Angel Uribe |
dc.subject.por.fl_str_mv |
Processos estocásticos. Estatística espacial Modelos de regressão. Inferência estatística |
topic |
Processos estocásticos. Estatística espacial Modelos de regressão. Inferência estatística |
description |
In this work, we present inference and diagnostics in spatial models. Firstly, we extend the Gaussian spatial linear model for the elliptical spatial linear models, and present the local influence methodology to assess the sensitivity of the maximum likelihood estimators to small perturbations in the data and/or the spatial linear model assumptions. Secondly, we consider the Gaussian spatial linear models with repetitions. We obtain in matrix notation a Bartlett correction factor for the profiled likelihood ratio statistic. We also present inference approach to estimate the smooth parameter from the Mat´ern family class of models. The maximum likelihood estimators are obtained, and an explicit expression for the Fisher information matrix is also presented, even when the smooth parameter for Mat´ern class of covariance structure is estimated. We present local and global influence diagnostics techniques to assess the influence of observations on Gaussian spatial linear models with repetitions. We review concepts of Cook’s distance and generalized leverage and extend it. For local influence we consider two different approach and for both we consider appropriated perturbation in the response variable and case weight perturbation. Finally, we describe the modeling and fitting of Markov random field spatial components within the generalized additive models for locations scale and shape framework. This allows modeling any or all of the parameters of the distribution for the response variable using explanatory variables and spatial effects. We present some simulations and real data sets illustrate the methodology. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-07-08T18:44:40Z |
dc.date.available.fl_str_mv |
2016-07-08T18:44:40Z |
dc.date.issued.fl_str_mv |
2016-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/17304 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000008tdt |
url |
https://repositorio.ufpe.br/handle/123456789/17304 |
identifier_str_mv |
ark:/64986/0013000008tdt |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Estatistica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/17304/5/TESE%20Fernanda%20De%20Bastiani.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/17304/1/TESE%20Fernanda%20De%20Bastiani.pdf https://repositorio.ufpe.br/bitstream/123456789/17304/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/17304/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/17304/4/TESE%20Fernanda%20De%20Bastiani.pdf.txt |
bitstream.checksum.fl_str_mv |
948c80a89d8eb2e95f5b720158c67aa0 8f146a8d3dfa9d213e65c7506719ad53 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 db380f89de64a89d4ce5044903d2b96b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172763021737984 |