Inference and diagnostics in spatial models

Detalhes bibliográficos
Autor(a) principal: DE BASTIANI, Fernanda
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000008tdt
Texto Completo: https://repositorio.ufpe.br/handle/123456789/17304
Resumo: In this work, we present inference and diagnostics in spatial models. Firstly, we extend the Gaussian spatial linear model for the elliptical spatial linear models, and present the local influence methodology to assess the sensitivity of the maximum likelihood estimators to small perturbations in the data and/or the spatial linear model assumptions. Secondly, we consider the Gaussian spatial linear models with repetitions. We obtain in matrix notation a Bartlett correction factor for the profiled likelihood ratio statistic. We also present inference approach to estimate the smooth parameter from the Mat´ern family class of models. The maximum likelihood estimators are obtained, and an explicit expression for the Fisher information matrix is also presented, even when the smooth parameter for Mat´ern class of covariance structure is estimated. We present local and global influence diagnostics techniques to assess the influence of observations on Gaussian spatial linear models with repetitions. We review concepts of Cook’s distance and generalized leverage and extend it. For local influence we consider two different approach and for both we consider appropriated perturbation in the response variable and case weight perturbation. Finally, we describe the modeling and fitting of Markov random field spatial components within the generalized additive models for locations scale and shape framework. This allows modeling any or all of the parameters of the distribution for the response variable using explanatory variables and spatial effects. We present some simulations and real data sets illustrate the methodology.
id UFPE_6ceb662a6af6437612acea236631f476
oai_identifier_str oai:repositorio.ufpe.br:123456789/17304
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling DE BASTIANI, FernandaCYSNEIROS, Audrey Helen Mariz de AquinoOPAZO, Miguel Angel Uribe2016-07-08T18:44:40Z2016-07-08T18:44:40Z2016-02-22https://repositorio.ufpe.br/handle/123456789/17304ark:/64986/0013000008tdtIn this work, we present inference and diagnostics in spatial models. Firstly, we extend the Gaussian spatial linear model for the elliptical spatial linear models, and present the local influence methodology to assess the sensitivity of the maximum likelihood estimators to small perturbations in the data and/or the spatial linear model assumptions. Secondly, we consider the Gaussian spatial linear models with repetitions. We obtain in matrix notation a Bartlett correction factor for the profiled likelihood ratio statistic. We also present inference approach to estimate the smooth parameter from the Mat´ern family class of models. The maximum likelihood estimators are obtained, and an explicit expression for the Fisher information matrix is also presented, even when the smooth parameter for Mat´ern class of covariance structure is estimated. We present local and global influence diagnostics techniques to assess the influence of observations on Gaussian spatial linear models with repetitions. We review concepts of Cook’s distance and generalized leverage and extend it. For local influence we consider two different approach and for both we consider appropriated perturbation in the response variable and case weight perturbation. Finally, we describe the modeling and fitting of Markov random field spatial components within the generalized additive models for locations scale and shape framework. This allows modeling any or all of the parameters of the distribution for the response variable using explanatory variables and spatial effects. We present some simulations and real data sets illustrate the methodology.FACEPENeste trabalho, apresentamos inferência e diagnósticos para modelos espaciais. Inicialmente, os modelos espaciais lineares Gaussianos são estendidos para os modelos espaciais lineares elípticos, e desenvolve-se a metodologia de influência local para avaliar a sensibilidade dos estimadores de máxima verossimilhança para pequenas perturbações nos dados e/ou nos pressupostos do modelo. Posteriormente, considera-se os modelos espaciais lineares Gaussianos com repetições. Para estes modelos obteve-se em notação matricial um fator de correção de Bartlett para a estatística da razão de verossimilhanças perfiladas. E também realizada inferência para estimar o parâmetro de suavização da classe de modelos da família Matérn. Os estimadores de máxima verossimilhança são obtidos, e uma expressão explícita para a matriz de informação de Fisher e apresentada, mesmo quando o parâmetro de suavização da classe de modelos da família Matérn da estrutura de covariância _e estimado. Desenvolve-se técnicas de diagnósticos de influência local e global para avaliar a influência de observações em modelos espaciais lineares Gaussianos com repetições. Os conceitos de distância de Cook e alavanca generalizada são revisados e estendidos para estes modelos. Para influência local são consideradas perturbações apropriadas na variável resposta e ponderação de casos. Finalmente, é descrita a modelagem para os componentes espaciais dos campos aleatórios Markovianos nos modelos aditivos generalizados de locação escala e forma. Isto permite modelar qualquer ou todos os parâmetros da distribuição para a variável resposta utilizando as variáveis explanatórias e efeitos espaciais. Alguns estudos de simulações são apresentados e as metodologias são ilustradas com conjuntos de dados reais.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessProcessos estocásticos.Estatística espacialModelos de regressão.Inferência estatísticaInference and diagnostics in spatial modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Fernanda De Bastiani.pdf.jpgTESE Fernanda De Bastiani.pdf.jpgGenerated Thumbnailimage/jpeg1257https://repositorio.ufpe.br/bitstream/123456789/17304/5/TESE%20Fernanda%20De%20Bastiani.pdf.jpg948c80a89d8eb2e95f5b720158c67aa0MD55ORIGINALTESE Fernanda De Bastiani.pdfTESE Fernanda De Bastiani.pdfapplication/pdf4258341https://repositorio.ufpe.br/bitstream/123456789/17304/1/TESE%20Fernanda%20De%20Bastiani.pdf8f146a8d3dfa9d213e65c7506719ad53MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17304/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17304/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Fernanda De Bastiani.pdf.txtTESE Fernanda De Bastiani.pdf.txtExtracted texttext/plain286868https://repositorio.ufpe.br/bitstream/123456789/17304/4/TESE%20Fernanda%20De%20Bastiani.pdf.txtdb380f89de64a89d4ce5044903d2b96bMD54123456789/173042019-10-25 19:08:58.903oai:repositorio.ufpe.br:123456789/17304TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T22:08:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Inference and diagnostics in spatial models
title Inference and diagnostics in spatial models
spellingShingle Inference and diagnostics in spatial models
DE BASTIANI, Fernanda
Processos estocásticos.
Estatística espacial
Modelos de regressão.
Inferência estatística
title_short Inference and diagnostics in spatial models
title_full Inference and diagnostics in spatial models
title_fullStr Inference and diagnostics in spatial models
title_full_unstemmed Inference and diagnostics in spatial models
title_sort Inference and diagnostics in spatial models
author DE BASTIANI, Fernanda
author_facet DE BASTIANI, Fernanda
author_role author
dc.contributor.author.fl_str_mv DE BASTIANI, Fernanda
dc.contributor.advisor1.fl_str_mv CYSNEIROS, Audrey Helen Mariz de Aquino
dc.contributor.advisor-co1.fl_str_mv OPAZO, Miguel Angel Uribe
contributor_str_mv CYSNEIROS, Audrey Helen Mariz de Aquino
OPAZO, Miguel Angel Uribe
dc.subject.por.fl_str_mv Processos estocásticos.
Estatística espacial
Modelos de regressão.
Inferência estatística
topic Processos estocásticos.
Estatística espacial
Modelos de regressão.
Inferência estatística
description In this work, we present inference and diagnostics in spatial models. Firstly, we extend the Gaussian spatial linear model for the elliptical spatial linear models, and present the local influence methodology to assess the sensitivity of the maximum likelihood estimators to small perturbations in the data and/or the spatial linear model assumptions. Secondly, we consider the Gaussian spatial linear models with repetitions. We obtain in matrix notation a Bartlett correction factor for the profiled likelihood ratio statistic. We also present inference approach to estimate the smooth parameter from the Mat´ern family class of models. The maximum likelihood estimators are obtained, and an explicit expression for the Fisher information matrix is also presented, even when the smooth parameter for Mat´ern class of covariance structure is estimated. We present local and global influence diagnostics techniques to assess the influence of observations on Gaussian spatial linear models with repetitions. We review concepts of Cook’s distance and generalized leverage and extend it. For local influence we consider two different approach and for both we consider appropriated perturbation in the response variable and case weight perturbation. Finally, we describe the modeling and fitting of Markov random field spatial components within the generalized additive models for locations scale and shape framework. This allows modeling any or all of the parameters of the distribution for the response variable using explanatory variables and spatial effects. We present some simulations and real data sets illustrate the methodology.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-07-08T18:44:40Z
dc.date.available.fl_str_mv 2016-07-08T18:44:40Z
dc.date.issued.fl_str_mv 2016-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/17304
dc.identifier.dark.fl_str_mv ark:/64986/0013000008tdt
url https://repositorio.ufpe.br/handle/123456789/17304
identifier_str_mv ark:/64986/0013000008tdt
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Estatistica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/17304/5/TESE%20Fernanda%20De%20Bastiani.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/17304/1/TESE%20Fernanda%20De%20Bastiani.pdf
https://repositorio.ufpe.br/bitstream/123456789/17304/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/17304/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/17304/4/TESE%20Fernanda%20De%20Bastiani.pdf.txt
bitstream.checksum.fl_str_mv 948c80a89d8eb2e95f5b720158c67aa0
8f146a8d3dfa9d213e65c7506719ad53
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
db380f89de64a89d4ce5044903d2b96b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172763021737984