A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linear
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-113413/ |
Resumo: | Uma abordagem típica de análise estatística consiste em vários estágios: exploração descritiva do conjunto de dados, definição da classe de modelos a ser considerada, seleção do melhor modelo dentro desta classe de acordo com algum critério pré-estabelecido e obtenção de inferências baseadas no modelo selecionado. Este ciclo é geralmente iterativo e envolve, além da aplicação dos conceitos e técnicas estatísticas, também considerações subjetivas. A conclusão obtida ao final deste processo depende do(s) modelo(s) escolhido(s), sem levar em consideração a incerteza devida à escolha do(s) modelo(s), o que pode resultar na subestimação da variabilidade de quantidades de interesse e em inferências super-otimistas ou viciadas. Este trabalho considera o problema de como incorporar a incerteza devido à escolha do modelo na inferência estatística aplicando a abordagem de Buckland et al. (1997), que propuseram um estimador ponderado para um parâmetro comum a todos modelos em estudo, sendo que os pesos desta ponderação são obtidos a partir do uso de critérios de informação ou do método bootstrap. Esta abordagem é aplicada a modelos de regressão linear e comparada com o procedimento usual de escolha de um modelo, com ponderação Bayesiana de modelos e com o uso do método bootstrap. O estimador ponderado apresentou erro quadrático médio substancialmente reduzido nas situações em que os coeficientes da regressão são pouco significativos, e comportamento similar ao estimador obtido via ponderação Bayesiana de modelos e com o uso do método bootstrap |
id |
USP_8fa1cb2575c1bf81b08b684a6bda3c16 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20191220-113413 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linearIncorporating model selection uncertainty into statistical inference in linear regressionINFERÊNCIA ESTATISTICAMODELOS MATEMÁTICOSREGRESSÃO LINEARUma abordagem típica de análise estatística consiste em vários estágios: exploração descritiva do conjunto de dados, definição da classe de modelos a ser considerada, seleção do melhor modelo dentro desta classe de acordo com algum critério pré-estabelecido e obtenção de inferências baseadas no modelo selecionado. Este ciclo é geralmente iterativo e envolve, além da aplicação dos conceitos e técnicas estatísticas, também considerações subjetivas. A conclusão obtida ao final deste processo depende do(s) modelo(s) escolhido(s), sem levar em consideração a incerteza devida à escolha do(s) modelo(s), o que pode resultar na subestimação da variabilidade de quantidades de interesse e em inferências super-otimistas ou viciadas. Este trabalho considera o problema de como incorporar a incerteza devido à escolha do modelo na inferência estatística aplicando a abordagem de Buckland et al. (1997), que propuseram um estimador ponderado para um parâmetro comum a todos modelos em estudo, sendo que os pesos desta ponderação são obtidos a partir do uso de critérios de informação ou do método bootstrap. Esta abordagem é aplicada a modelos de regressão linear e comparada com o procedimento usual de escolha de um modelo, com ponderação Bayesiana de modelos e com o uso do método bootstrap. O estimador ponderado apresentou erro quadrático médio substancialmente reduzido nas situações em que os coeficientes da regressão são pouco significativos, e comportamento similar ao estimador obtido via ponderação Bayesiana de modelos e com o uso do método bootstrapStatistical data analysis typically has several stages: exploration of the data set; deciding on a class or classes of models to be considered; selecting the best of them according to some criterion and making inferences based on the selected model. The cycle is usually iterative and will involve subject-matter considerations as well as statistical insights. The conclusion reached after such a process depends on the model(s) selected, but the consequent uncertainty is not usually incorporated into the inference. This may lead to underestimation of the uncertainty about quantities of interest and overoptimistic and biased inferences. This work consider the problem of how to incorporate model selection uncertainty into statistical inference appliying the approach of Buckland et al. (1997), who proposed a weighted estimator of a parameter common to all models under study, where the weights are obtained using information criteria or the bootstrap. This approach is applied to linear regression models and compared with the usual model-choice framework, with Bayesian model averaging and the bootstrap. The weighted estimator behaves similarly to model averaging and the bootstrap, with smaller mean squared error than the usual model-selection based estimator when the regression coeficients are not significant.Biblioteca Digitais de Teses e Dissertações da USPDemetrio, Clarice Garcia BorgesCandolo, Cecilia2001-06-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-113413/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-12-20T23:59:02Zoai:teses.usp.br:tde-20191220-113413Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-12-20T23:59:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linear Incorporating model selection uncertainty into statistical inference in linear regression |
title |
A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linear |
spellingShingle |
A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linear Candolo, Cecilia INFERÊNCIA ESTATISTICA MODELOS MATEMÁTICOS REGRESSÃO LINEAR |
title_short |
A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linear |
title_full |
A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linear |
title_fullStr |
A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linear |
title_full_unstemmed |
A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linear |
title_sort |
A incorporação da incerteza devido à escolha de modelos na inferência estatística com aplicação em modelos de regressão linear |
author |
Candolo, Cecilia |
author_facet |
Candolo, Cecilia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Demetrio, Clarice Garcia Borges |
dc.contributor.author.fl_str_mv |
Candolo, Cecilia |
dc.subject.por.fl_str_mv |
INFERÊNCIA ESTATISTICA MODELOS MATEMÁTICOS REGRESSÃO LINEAR |
topic |
INFERÊNCIA ESTATISTICA MODELOS MATEMÁTICOS REGRESSÃO LINEAR |
description |
Uma abordagem típica de análise estatística consiste em vários estágios: exploração descritiva do conjunto de dados, definição da classe de modelos a ser considerada, seleção do melhor modelo dentro desta classe de acordo com algum critério pré-estabelecido e obtenção de inferências baseadas no modelo selecionado. Este ciclo é geralmente iterativo e envolve, além da aplicação dos conceitos e técnicas estatísticas, também considerações subjetivas. A conclusão obtida ao final deste processo depende do(s) modelo(s) escolhido(s), sem levar em consideração a incerteza devida à escolha do(s) modelo(s), o que pode resultar na subestimação da variabilidade de quantidades de interesse e em inferências super-otimistas ou viciadas. Este trabalho considera o problema de como incorporar a incerteza devido à escolha do modelo na inferência estatística aplicando a abordagem de Buckland et al. (1997), que propuseram um estimador ponderado para um parâmetro comum a todos modelos em estudo, sendo que os pesos desta ponderação são obtidos a partir do uso de critérios de informação ou do método bootstrap. Esta abordagem é aplicada a modelos de regressão linear e comparada com o procedimento usual de escolha de um modelo, com ponderação Bayesiana de modelos e com o uso do método bootstrap. O estimador ponderado apresentou erro quadrático médio substancialmente reduzido nas situações em que os coeficientes da regressão são pouco significativos, e comportamento similar ao estimador obtido via ponderação Bayesiana de modelos e com o uso do método bootstrap |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-06-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-113413/ |
url |
https://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-113413/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257198417149952 |