Finitude genérica para configurações centrais de Dziobek
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000h991 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/49305 |
Resumo: | Neste trabalho demonstraremos a finitude genérica para configurações centrais de Dziobek associadas a um potencial semi-inteiro. Mais exatamente, existe um aberto de Zariski no espaço euclidiano n-dimensional, tal que para todo vetor de massas m neste aberto, corresponde uma quantidade finita, a menos de isometrias, de configurações centrais com dimensão n − 2. A análise é restrita ao caso de forças que dependem das distâncias mútuas elevadas a um expoente semi-inteiro, possibilitando utilizar métodos da Geometria Algébrica. Para este fim, determinamos equações polinomiais cujos zeros estão relacionados com as chamadas configurações de Dziobek. Assim construímos uma variedade quase-afim definida por esses polinômios e calculamos sua dimensão utilizando os espaços tangentes e a matriz Jacobiana. Aplicando o Teorema da Dimensão das Fibras, encontramos o aberto de Zariski desejado. Por fim, existe uma cota superior para estas quantidades finitas de classes de configurações centrais que independe da escolha genérica das massas. Chegamos a esta cota utilizando resultados topológicos para a quantidade de componentes conexas da variedade afim obtida. |
id |
UFPE_aeb6c1c9ea60f2c496d1b5e76ee74745 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/49305 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
NONATO, Igor de Barroshttp://lattes.cnpq.br/6801146023381795http://lattes.cnpq.br/0559184209749319LEANDRO, Eduardo Shirlippe Goes2023-03-09T13:53:34Z2023-03-09T13:53:34Z2022-07-27NONATO, Igor de Barros. Finitude genérica para configurações centrais de Dziobek. 2022. Dissertação (Mestrado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/49305ark:/64986/001300000h991Neste trabalho demonstraremos a finitude genérica para configurações centrais de Dziobek associadas a um potencial semi-inteiro. Mais exatamente, existe um aberto de Zariski no espaço euclidiano n-dimensional, tal que para todo vetor de massas m neste aberto, corresponde uma quantidade finita, a menos de isometrias, de configurações centrais com dimensão n − 2. A análise é restrita ao caso de forças que dependem das distâncias mútuas elevadas a um expoente semi-inteiro, possibilitando utilizar métodos da Geometria Algébrica. Para este fim, determinamos equações polinomiais cujos zeros estão relacionados com as chamadas configurações de Dziobek. Assim construímos uma variedade quase-afim definida por esses polinômios e calculamos sua dimensão utilizando os espaços tangentes e a matriz Jacobiana. Aplicando o Teorema da Dimensão das Fibras, encontramos o aberto de Zariski desejado. Por fim, existe uma cota superior para estas quantidades finitas de classes de configurações centrais que independe da escolha genérica das massas. Chegamos a esta cota utilizando resultados topológicos para a quantidade de componentes conexas da variedade afim obtida.CAPESIn this work we demonstrate generic finiteness for Dziobek configurations for potentials with semi-integer exponents. More exactly, there is a Zariski open set in the n-dimensional Euclidean space such that for every mass vector m in this open set, there corresponds a finite number, up to isometries, of central configurations of dimension n − 2. The analysis is restricted to the case of forces that depend on mutual distances raised to a semi-integer exponent, which makes it possible to use methods from Algebraic Geometry. To this end, we determine polynomial equations whose zeros are related to the Dziobek configurations. We construct the quasi-affine variety defined by these polynomials and calculate its dimension using tangent spaces and Jacobian matrices. Applying the Fiber Dimension Theorem, we find the required Zariski open set. Finally, there is an upper bound for these finite amounts of classes of central configurations that does not depend on the generic choice of masses. We arrive at this bound by using topological results for the number of connected components of an affine variety.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnáliseFinitude genéricaConfigurações de DziobekFinitude genérica para configurações centrais de Dziobekinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTDISSERTAÇÃO Igor de Barros Nonato.pdf.txtDISSERTAÇÃO Igor de Barros Nonato.pdf.txtExtracted texttext/plain141478https://repositorio.ufpe.br/bitstream/123456789/49305/4/DISSERTA%c3%87%c3%83O%20%20Igor%20de%20Barros%20Nonato.pdf.txt06f06cca260e89dd2fd66c9ef112f49aMD54THUMBNAILDISSERTAÇÃO Igor de Barros Nonato.pdf.jpgDISSERTAÇÃO Igor de Barros Nonato.pdf.jpgGenerated Thumbnailimage/jpeg1225https://repositorio.ufpe.br/bitstream/123456789/49305/5/DISSERTA%c3%87%c3%83O%20%20Igor%20de%20Barros%20Nonato.pdf.jpgf18bf963ec52985c9ffc7c6cbf5ec0a7MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49305/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49305/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53ORIGINALDISSERTAÇÃO Igor de Barros Nonato.pdfDISSERTAÇÃO Igor de Barros Nonato.pdfapplication/pdf1479869https://repositorio.ufpe.br/bitstream/123456789/49305/1/DISSERTA%c3%87%c3%83O%20%20Igor%20de%20Barros%20Nonato.pdf651e14d4ff79b852c55d75ae7114bf17MD51123456789/493052023-03-10 02:18:40.594oai:repositorio.ufpe.br:123456789/49305VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-03-10T05:18:40Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Finitude genérica para configurações centrais de Dziobek |
title |
Finitude genérica para configurações centrais de Dziobek |
spellingShingle |
Finitude genérica para configurações centrais de Dziobek NONATO, Igor de Barros Análise Finitude genérica Configurações de Dziobek |
title_short |
Finitude genérica para configurações centrais de Dziobek |
title_full |
Finitude genérica para configurações centrais de Dziobek |
title_fullStr |
Finitude genérica para configurações centrais de Dziobek |
title_full_unstemmed |
Finitude genérica para configurações centrais de Dziobek |
title_sort |
Finitude genérica para configurações centrais de Dziobek |
author |
NONATO, Igor de Barros |
author_facet |
NONATO, Igor de Barros |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6801146023381795 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0559184209749319 |
dc.contributor.author.fl_str_mv |
NONATO, Igor de Barros |
dc.contributor.advisor1.fl_str_mv |
LEANDRO, Eduardo Shirlippe Goes |
contributor_str_mv |
LEANDRO, Eduardo Shirlippe Goes |
dc.subject.por.fl_str_mv |
Análise Finitude genérica Configurações de Dziobek |
topic |
Análise Finitude genérica Configurações de Dziobek |
description |
Neste trabalho demonstraremos a finitude genérica para configurações centrais de Dziobek associadas a um potencial semi-inteiro. Mais exatamente, existe um aberto de Zariski no espaço euclidiano n-dimensional, tal que para todo vetor de massas m neste aberto, corresponde uma quantidade finita, a menos de isometrias, de configurações centrais com dimensão n − 2. A análise é restrita ao caso de forças que dependem das distâncias mútuas elevadas a um expoente semi-inteiro, possibilitando utilizar métodos da Geometria Algébrica. Para este fim, determinamos equações polinomiais cujos zeros estão relacionados com as chamadas configurações de Dziobek. Assim construímos uma variedade quase-afim definida por esses polinômios e calculamos sua dimensão utilizando os espaços tangentes e a matriz Jacobiana. Aplicando o Teorema da Dimensão das Fibras, encontramos o aberto de Zariski desejado. Por fim, existe uma cota superior para estas quantidades finitas de classes de configurações centrais que independe da escolha genérica das massas. Chegamos a esta cota utilizando resultados topológicos para a quantidade de componentes conexas da variedade afim obtida. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-07-27 |
dc.date.accessioned.fl_str_mv |
2023-03-09T13:53:34Z |
dc.date.available.fl_str_mv |
2023-03-09T13:53:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
NONATO, Igor de Barros. Finitude genérica para configurações centrais de Dziobek. 2022. Dissertação (Mestrado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/49305 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000h991 |
identifier_str_mv |
NONATO, Igor de Barros. Finitude genérica para configurações centrais de Dziobek. 2022. Dissertação (Mestrado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/001300000h991 |
url |
https://repositorio.ufpe.br/handle/123456789/49305 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/49305/4/DISSERTA%c3%87%c3%83O%20%20Igor%20de%20Barros%20Nonato.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/49305/5/DISSERTA%c3%87%c3%83O%20%20Igor%20de%20Barros%20Nonato.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/49305/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/49305/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/49305/1/DISSERTA%c3%87%c3%83O%20%20Igor%20de%20Barros%20Nonato.pdf |
bitstream.checksum.fl_str_mv |
06f06cca260e89dd2fd66c9ef112f49a f18bf963ec52985c9ffc7c6cbf5ec0a7 e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 651e14d4ff79b852c55d75ae7114bf17 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172826297008128 |