Transition from integrable to chaotic domain in spectra of spin chains
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000000nb7 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/24737 |
Resumo: | In this thesis we present an approach, similar to random matrix ensembles, in order to study the integrable-chaotic transition in the Heisenberg spin model. We consider three ways to break the integrability: presence on an external field on a single spin, coupling of an external random field with each spin in the chain and next nearest neighbor interaction between spins. We propose a transition described by a power law in the spectral density, i.e. S(k) ∝ 1/kα, where α = 2 for the integrable case and α = 1 for the chaotic case, with 1 < α < 2 for systems in the crossover regime. The transition is also described by the behavior of the "burstiness" B and the Kullback–Leibler divergence DLK(PW−D(s)|Pdata(s)), where PW−D(s) and Pdata(s) are the Wigner-Dyson and the system’s spacing distribution respectively. The B coefficient is associated to a sequence of events in the system. The Kullback–Leibler divergence provides information on how two distributions differ from each other. From analyzing the behavior of these three quantities, we obtain a universal description of integrable-chaotic transition in the spin chains. |
id |
UFPE_cafc3f2778f91ef4cd06b049cd754605 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/24737 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
MORENO TARQUINO, Juan Nicolashttp://lattes.cnpq.br/4351533482394316http://lattes.cnpq.br/7160030619369816MACEDO, Antonio Murilo Santos2018-06-04T21:25:20Z2018-06-04T21:25:20Z2016-08-31https://repositorio.ufpe.br/handle/123456789/24737ark:/64986/0013000000nb7In this thesis we present an approach, similar to random matrix ensembles, in order to study the integrable-chaotic transition in the Heisenberg spin model. We consider three ways to break the integrability: presence on an external field on a single spin, coupling of an external random field with each spin in the chain and next nearest neighbor interaction between spins. We propose a transition described by a power law in the spectral density, i.e. S(k) ∝ 1/kα, where α = 2 for the integrable case and α = 1 for the chaotic case, with 1 < α < 2 for systems in the crossover regime. The transition is also described by the behavior of the "burstiness" B and the Kullback–Leibler divergence DLK(PW−D(s)|Pdata(s)), where PW−D(s) and Pdata(s) are the Wigner-Dyson and the system’s spacing distribution respectively. The B coefficient is associated to a sequence of events in the system. The Kullback–Leibler divergence provides information on how two distributions differ from each other. From analyzing the behavior of these three quantities, we obtain a universal description of integrable-chaotic transition in the spin chains.CNPQNesta dissertação apresentaremos uma descrição, similar a dos ensembles da teoria de matrizes aleatórias, com o objetivo de estudar transições entre os regimes integrável e caótico em uma cadeia de spins de Heisenberg. Consideramos três formas de quebrar a integrabilidade: interação de um campo externo com um único spin, interação com um campo aleatório em cada spin da cadeia e interação entre segundos vizinhos. Nós propomos uma transição integrável-caótica pode ser descrita por uma lei de potências na densidade espectral S(k), ou seja os sistemas quânticos caóticos apresentam ruído S(k) ∝ 1/kα, onde α = 2 para o caso integrável e α = 1 para o caso caótico, com 1 < α < 2 para sistemas que estão entre os dois regimes. A transição também é descrita pelo comportamento do “burstiness“ B e da divergência de Kullback–Leibler DLK(PW−D(s)|Pdados(s)), onde PW−D(s) é a distribuição de Wigner-Dyson e Pdados(s) é a distribuição de espaçamentos obtida do sistema. O primeiro é associado a séries de eventos de caráter regular e o segundo mede o grau com que diferem as duas distribuições estatísticas. Analisando o comportamenteo desses indicadores, obtivemos uma rota universal para a transição integrável-caótico na cadeia de spins.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMatéria condensadaTransporte quânticoCaos quânticoTransition from integrable to chaotic domain in spectra of spin chainsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Juan Nicolás Moreno Tarquino.pdf.jpgDISSERTAÇÃO Juan Nicolás Moreno Tarquino.pdf.jpgGenerated Thumbnailimage/jpeg1342https://repositorio.ufpe.br/bitstream/123456789/24737/5/DISSERTA%c3%87%c3%83O%20Juan%20Nicol%c3%a1s%20Moreno%20Tarquino.pdf.jpg0678c89b2a58de233e8d2a99e93354cdMD55ORIGINALDISSERTAÇÃO Juan Nicolás Moreno Tarquino.pdfDISSERTAÇÃO Juan Nicolás Moreno Tarquino.pdfapplication/pdf3366802https://repositorio.ufpe.br/bitstream/123456789/24737/1/DISSERTA%c3%87%c3%83O%20Juan%20Nicol%c3%a1s%20Moreno%20Tarquino.pdf8f77304451b054ca28fcc60e8ca976e4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/24737/2/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD52TEXTDISSERTAÇÃO Juan Nicolás Moreno Tarquino.pdf.txtDISSERTAÇÃO Juan Nicolás Moreno Tarquino.pdf.txtExtracted texttext/plain183036https://repositorio.ufpe.br/bitstream/123456789/24737/3/DISSERTA%c3%87%c3%83O%20Juan%20Nicol%c3%a1s%20Moreno%20Tarquino.pdf.txt6253e9a5ab51834fb2c35593912a4e01MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/24737/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54123456789/247372019-10-26 00:06:18.766oai:repositorio.ufpe.br:123456789/24737TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T03:06:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Transition from integrable to chaotic domain in spectra of spin chains |
title |
Transition from integrable to chaotic domain in spectra of spin chains |
spellingShingle |
Transition from integrable to chaotic domain in spectra of spin chains MORENO TARQUINO, Juan Nicolas Matéria condensada Transporte quântico Caos quântico |
title_short |
Transition from integrable to chaotic domain in spectra of spin chains |
title_full |
Transition from integrable to chaotic domain in spectra of spin chains |
title_fullStr |
Transition from integrable to chaotic domain in spectra of spin chains |
title_full_unstemmed |
Transition from integrable to chaotic domain in spectra of spin chains |
title_sort |
Transition from integrable to chaotic domain in spectra of spin chains |
author |
MORENO TARQUINO, Juan Nicolas |
author_facet |
MORENO TARQUINO, Juan Nicolas |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/4351533482394316 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7160030619369816 |
dc.contributor.author.fl_str_mv |
MORENO TARQUINO, Juan Nicolas |
dc.contributor.advisor1.fl_str_mv |
MACEDO, Antonio Murilo Santos |
contributor_str_mv |
MACEDO, Antonio Murilo Santos |
dc.subject.por.fl_str_mv |
Matéria condensada Transporte quântico Caos quântico |
topic |
Matéria condensada Transporte quântico Caos quântico |
description |
In this thesis we present an approach, similar to random matrix ensembles, in order to study the integrable-chaotic transition in the Heisenberg spin model. We consider three ways to break the integrability: presence on an external field on a single spin, coupling of an external random field with each spin in the chain and next nearest neighbor interaction between spins. We propose a transition described by a power law in the spectral density, i.e. S(k) ∝ 1/kα, where α = 2 for the integrable case and α = 1 for the chaotic case, with 1 < α < 2 for systems in the crossover regime. The transition is also described by the behavior of the "burstiness" B and the Kullback–Leibler divergence DLK(PW−D(s)|Pdata(s)), where PW−D(s) and Pdata(s) are the Wigner-Dyson and the system’s spacing distribution respectively. The B coefficient is associated to a sequence of events in the system. The Kullback–Leibler divergence provides information on how two distributions differ from each other. From analyzing the behavior of these three quantities, we obtain a universal description of integrable-chaotic transition in the spin chains. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-08-31 |
dc.date.accessioned.fl_str_mv |
2018-06-04T21:25:20Z |
dc.date.available.fl_str_mv |
2018-06-04T21:25:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/24737 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000000nb7 |
url |
https://repositorio.ufpe.br/handle/123456789/24737 |
identifier_str_mv |
ark:/64986/0013000000nb7 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Fisica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/24737/5/DISSERTA%c3%87%c3%83O%20Juan%20Nicol%c3%a1s%20Moreno%20Tarquino.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/24737/1/DISSERTA%c3%87%c3%83O%20Juan%20Nicol%c3%a1s%20Moreno%20Tarquino.pdf https://repositorio.ufpe.br/bitstream/123456789/24737/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/24737/3/DISSERTA%c3%87%c3%83O%20Juan%20Nicol%c3%a1s%20Moreno%20Tarquino.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/24737/4/license_rdf |
bitstream.checksum.fl_str_mv |
0678c89b2a58de233e8d2a99e93354cd 8f77304451b054ca28fcc60e8ca976e4 4b8a02c7f2818eaf00dcf2260dd5eb08 6253e9a5ab51834fb2c35593912a4e01 e39d27027a6cc9cb039ad269a5db8e34 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172681859858432 |