HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Boletim de Ciências Geodésicas |
Texto Completo: | https://revistas.ufpr.br/bcg/article/view/49652 |
Resumo: | In this paper, a new denoising method is proposed for hyperspectral remote sensing images, and tested on both the simulated and the real-life datacubes. Predicted datacube of the hyperspectral images is calculated by multiple linear regression in the spectral domain based on the strong spectral correlation of the useful signal and the inter-band uncorrelation of the random noise terms in hyperspectral images. A two dimensional dual-tree complex wavelet transform is performed in the spectral derivative domain, where the noise level is elevated temporarily to avoid signal deformation during the wavelet denoising, and then the bivariate shrinkage is used to shrink the wavelet coefficients. Simulated experimental results demonstrate that the proposed method obtains better results than the other denoising methods proposed in the reference, improves the signal to noise ratio up to 0.5dB to 10dB. The real-life data experiment shows that the proposed method is valid and effective. |
id |
UFPR-2_c512c553dd92f3f2f1936e464c2cf7b0 |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/49652 |
network_acronym_str |
UFPR-2 |
network_name_str |
Boletim de Ciências Geodésicas |
repository_id_str |
|
spelling |
HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAINGeociências; GeodésiaHyperspectral imagery, denoising, multiple linear regression, complex wavelet, bivariate shrinkageIn this paper, a new denoising method is proposed for hyperspectral remote sensing images, and tested on both the simulated and the real-life datacubes. Predicted datacube of the hyperspectral images is calculated by multiple linear regression in the spectral domain based on the strong spectral correlation of the useful signal and the inter-band uncorrelation of the random noise terms in hyperspectral images. A two dimensional dual-tree complex wavelet transform is performed in the spectral derivative domain, where the noise level is elevated temporarily to avoid signal deformation during the wavelet denoising, and then the bivariate shrinkage is used to shrink the wavelet coefficients. Simulated experimental results demonstrate that the proposed method obtains better results than the other denoising methods proposed in the reference, improves the signal to noise ratio up to 0.5dB to 10dB. The real-life data experiment shows that the proposed method is valid and effective.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesNational Natural Science Foundation of ChinaSun, LeiXu, Dong2016-12-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/49652Boletim de Ciências Geodésicas; Vol 22, No 4 (2016)Bulletin of Geodetic Sciences; Vol 22, No 4 (2016)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/49652/29694Copyright (c) 2016 Lei Sun, Dong Xuhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess2016-12-08T13:14:55Zoai:revistas.ufpr.br:article/49652Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2016-12-08T13:14:55Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false |
dc.title.none.fl_str_mv |
HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN |
title |
HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN |
spellingShingle |
HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN Sun, Lei Geociências; Geodésia Hyperspectral imagery, denoising, multiple linear regression, complex wavelet, bivariate shrinkage |
title_short |
HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN |
title_full |
HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN |
title_fullStr |
HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN |
title_full_unstemmed |
HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN |
title_sort |
HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN |
author |
Sun, Lei |
author_facet |
Sun, Lei Xu, Dong |
author_role |
author |
author2 |
Xu, Dong |
author2_role |
author |
dc.contributor.none.fl_str_mv |
National Natural Science Foundation of China |
dc.contributor.author.fl_str_mv |
Sun, Lei Xu, Dong |
dc.subject.por.fl_str_mv |
Geociências; Geodésia Hyperspectral imagery, denoising, multiple linear regression, complex wavelet, bivariate shrinkage |
topic |
Geociências; Geodésia Hyperspectral imagery, denoising, multiple linear regression, complex wavelet, bivariate shrinkage |
description |
In this paper, a new denoising method is proposed for hyperspectral remote sensing images, and tested on both the simulated and the real-life datacubes. Predicted datacube of the hyperspectral images is calculated by multiple linear regression in the spectral domain based on the strong spectral correlation of the useful signal and the inter-band uncorrelation of the random noise terms in hyperspectral images. A two dimensional dual-tree complex wavelet transform is performed in the spectral derivative domain, where the noise level is elevated temporarily to avoid signal deformation during the wavelet denoising, and then the bivariate shrinkage is used to shrink the wavelet coefficients. Simulated experimental results demonstrate that the proposed method obtains better results than the other denoising methods proposed in the reference, improves the signal to noise ratio up to 0.5dB to 10dB. The real-life data experiment shows that the proposed method is valid and effective. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-08 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/49652 |
url |
https://revistas.ufpr.br/bcg/article/view/49652 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/49652/29694 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 Lei Sun, Dong Xu http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 Lei Sun, Dong Xu http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
dc.source.none.fl_str_mv |
Boletim de Ciências Geodésicas; Vol 22, No 4 (2016) Bulletin of Geodetic Sciences; Vol 22, No 4 (2016) 1982-2170 1413-4853 reponame:Boletim de Ciências Geodésicas instname:Universidade Federal do Paraná (UFPR) instacron:UFPR |
instname_str |
Universidade Federal do Paraná (UFPR) |
instacron_str |
UFPR |
institution |
UFPR |
reponame_str |
Boletim de Ciências Geodésicas |
collection |
Boletim de Ciências Geodésicas |
repository.name.fl_str_mv |
Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR) |
repository.mail.fl_str_mv |
qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br |
_version_ |
1799771719369490432 |