HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN

Detalhes bibliográficos
Autor(a) principal: Sun, Lei
Data de Publicação: 2016
Outros Autores: Xu, Dong
Tipo de documento: Artigo
Idioma: por
Título da fonte: Boletim de Ciências Geodésicas
Texto Completo: https://revistas.ufpr.br/bcg/article/view/49652
Resumo: In this paper, a new denoising method is proposed for hyperspectral remote sensing images, and tested on both the simulated and the real-life datacubes. Predicted datacube of the hyperspectral images is calculated by multiple linear regression in the spectral domain based on the strong spectral correlation of the useful signal and the inter-band uncorrelation of the random noise terms in hyperspectral images. A two dimensional dual-tree complex wavelet transform is performed in the spectral derivative domain, where the noise level is elevated temporarily to avoid signal deformation during the wavelet denoising, and then the bivariate shrinkage is used to shrink the wavelet coefficients. Simulated experimental results demonstrate that the proposed method obtains better results than the other denoising methods proposed in the reference, improves the signal to noise ratio up to 0.5dB to 10dB. The real-life data experiment shows that the proposed method is valid and effective.
id UFPR-2_c512c553dd92f3f2f1936e464c2cf7b0
oai_identifier_str oai:revistas.ufpr.br:article/49652
network_acronym_str UFPR-2
network_name_str Boletim de Ciências Geodésicas
repository_id_str
spelling HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAINGeociências; GeodésiaHyperspectral imagery, denoising, multiple linear regression, complex wavelet, bivariate shrinkageIn this paper, a new denoising method is proposed for hyperspectral remote sensing images, and tested on both the simulated and the real-life datacubes. Predicted datacube of the hyperspectral images is calculated by multiple linear regression in the spectral domain based on the strong spectral correlation of the useful signal and the inter-band uncorrelation of the random noise terms in hyperspectral images. A two dimensional dual-tree complex wavelet transform is performed in the spectral derivative domain, where the noise level is elevated temporarily to avoid signal deformation during the wavelet denoising, and then the bivariate shrinkage is used to shrink the wavelet coefficients. Simulated experimental results demonstrate that the proposed method obtains better results than the other denoising methods proposed in the reference, improves the signal to noise ratio up to 0.5dB to 10dB. The real-life data experiment shows that the proposed method is valid and effective.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesNational Natural Science Foundation of ChinaSun, LeiXu, Dong2016-12-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/49652Boletim de Ciências Geodésicas; Vol 22, No 4 (2016)Bulletin of Geodetic Sciences; Vol 22, No 4 (2016)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/49652/29694Copyright (c) 2016 Lei Sun, Dong Xuhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess2016-12-08T13:14:55Zoai:revistas.ufpr.br:article/49652Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2016-12-08T13:14:55Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false
dc.title.none.fl_str_mv HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
title HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
spellingShingle HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
Sun, Lei
Geociências; Geodésia
Hyperspectral imagery, denoising, multiple linear regression, complex wavelet, bivariate shrinkage
title_short HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
title_full HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
title_fullStr HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
title_full_unstemmed HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
title_sort HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
author Sun, Lei
author_facet Sun, Lei
Xu, Dong
author_role author
author2 Xu, Dong
author2_role author
dc.contributor.none.fl_str_mv National Natural Science Foundation of China
dc.contributor.author.fl_str_mv Sun, Lei
Xu, Dong
dc.subject.por.fl_str_mv Geociências; Geodésia
Hyperspectral imagery, denoising, multiple linear regression, complex wavelet, bivariate shrinkage
topic Geociências; Geodésia
Hyperspectral imagery, denoising, multiple linear regression, complex wavelet, bivariate shrinkage
description In this paper, a new denoising method is proposed for hyperspectral remote sensing images, and tested on both the simulated and the real-life datacubes. Predicted datacube of the hyperspectral images is calculated by multiple linear regression in the spectral domain based on the strong spectral correlation of the useful signal and the inter-band uncorrelation of the random noise terms in hyperspectral images. A two dimensional dual-tree complex wavelet transform is performed in the spectral derivative domain, where the noise level is elevated temporarily to avoid signal deformation during the wavelet denoising, and then the bivariate shrinkage is used to shrink the wavelet coefficients. Simulated experimental results demonstrate that the proposed method obtains better results than the other denoising methods proposed in the reference, improves the signal to noise ratio up to 0.5dB to 10dB. The real-life data experiment shows that the proposed method is valid and effective.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-08
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufpr.br/bcg/article/view/49652
url https://revistas.ufpr.br/bcg/article/view/49652
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ufpr.br/bcg/article/view/49652/29694
dc.rights.driver.fl_str_mv Copyright (c) 2016 Lei Sun, Dong Xu
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 Lei Sun, Dong Xu
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
dc.source.none.fl_str_mv Boletim de Ciências Geodésicas; Vol 22, No 4 (2016)
Bulletin of Geodetic Sciences; Vol 22, No 4 (2016)
1982-2170
1413-4853
reponame:Boletim de Ciências Geodésicas
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Boletim de Ciências Geodésicas
collection Boletim de Ciências Geodésicas
repository.name.fl_str_mv Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br
_version_ 1799771719369490432