Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/75690 |
Resumo: | This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance. |
id |
UFRGS-2_16eda11cdf46cbb9a4cfea858079a0a1 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/75690 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Azevedo, Ricardo LessaAwruch, Armando Miguel2013-07-09T01:51:49Z19990100-7386http://hdl.handle.net/10183/75690000276678This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.application/pdfengRevista brasileira de ciências mecânicas. Rio de Janeiro. Vol. 21, n. 3 (1999), p. 446-462Placas (Engenharia)Elementos finitosEstruturas em cascaPlates and ShellsDynamic AnalysisGeometric NonlinearityFinite ElementsGeometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integrationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000276678.pdf000276678.pdfTexto completo (inglês)application/pdf179576http://www.lume.ufrgs.br/bitstream/10183/75690/1/000276678.pdfd50171c0fe92b4fb211dc96362d785eeMD51TEXT000276678.pdf.txt000276678.pdf.txtExtracted Texttext/plain29527http://www.lume.ufrgs.br/bitstream/10183/75690/2/000276678.pdf.txt259b3d1a82a016ad4b32aa2f62ac83ceMD52THUMBNAIL000276678.pdf.jpg000276678.pdf.jpgGenerated Thumbnailimage/jpeg1415http://www.lume.ufrgs.br/bitstream/10183/75690/3/000276678.pdf.jpgafe36d60b198bc0a87e3cc325663fa03MD5310183/756902018-10-11 09:18:29.27oai:www.lume.ufrgs.br:10183/75690Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-11T12:18:29Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration |
title |
Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration |
spellingShingle |
Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration Azevedo, Ricardo Lessa Placas (Engenharia) Elementos finitos Estruturas em casca Plates and Shells Dynamic Analysis Geometric Nonlinearity Finite Elements |
title_short |
Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration |
title_full |
Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration |
title_fullStr |
Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration |
title_full_unstemmed |
Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration |
title_sort |
Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration |
author |
Azevedo, Ricardo Lessa |
author_facet |
Azevedo, Ricardo Lessa Awruch, Armando Miguel |
author_role |
author |
author2 |
Awruch, Armando Miguel |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Azevedo, Ricardo Lessa Awruch, Armando Miguel |
dc.subject.por.fl_str_mv |
Placas (Engenharia) Elementos finitos Estruturas em casca |
topic |
Placas (Engenharia) Elementos finitos Estruturas em casca Plates and Shells Dynamic Analysis Geometric Nonlinearity Finite Elements |
dc.subject.eng.fl_str_mv |
Plates and Shells Dynamic Analysis Geometric Nonlinearity Finite Elements |
description |
This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance. |
publishDate |
1999 |
dc.date.issued.fl_str_mv |
1999 |
dc.date.accessioned.fl_str_mv |
2013-07-09T01:51:49Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/75690 |
dc.identifier.issn.pt_BR.fl_str_mv |
0100-7386 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000276678 |
identifier_str_mv |
0100-7386 000276678 |
url |
http://hdl.handle.net/10183/75690 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Revista brasileira de ciências mecânicas. Rio de Janeiro. Vol. 21, n. 3 (1999), p. 446-462 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/75690/1/000276678.pdf http://www.lume.ufrgs.br/bitstream/10183/75690/2/000276678.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/75690/3/000276678.pdf.jpg |
bitstream.checksum.fl_str_mv |
d50171c0fe92b4fb211dc96362d785ee 259b3d1a82a016ad4b32aa2f62ac83ce afe36d60b198bc0a87e3cc325663fa03 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447499098292224 |