Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration

Detalhes bibliográficos
Autor(a) principal: Azevedo, Ricardo Lessa
Data de Publicação: 1999
Outros Autores: Awruch, Armando Miguel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/75690
Resumo: This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.
id UFRGS-2_16eda11cdf46cbb9a4cfea858079a0a1
oai_identifier_str oai:www.lume.ufrgs.br:10183/75690
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Azevedo, Ricardo LessaAwruch, Armando Miguel2013-07-09T01:51:49Z19990100-7386http://hdl.handle.net/10183/75690000276678This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.application/pdfengRevista brasileira de ciências mecânicas. Rio de Janeiro. Vol. 21, n. 3 (1999), p. 446-462Placas (Engenharia)Elementos finitosEstruturas em cascaPlates and ShellsDynamic AnalysisGeometric NonlinearityFinite ElementsGeometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integrationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000276678.pdf000276678.pdfTexto completo (inglês)application/pdf179576http://www.lume.ufrgs.br/bitstream/10183/75690/1/000276678.pdfd50171c0fe92b4fb211dc96362d785eeMD51TEXT000276678.pdf.txt000276678.pdf.txtExtracted Texttext/plain29527http://www.lume.ufrgs.br/bitstream/10183/75690/2/000276678.pdf.txt259b3d1a82a016ad4b32aa2f62ac83ceMD52THUMBNAIL000276678.pdf.jpg000276678.pdf.jpgGenerated Thumbnailimage/jpeg1415http://www.lume.ufrgs.br/bitstream/10183/75690/3/000276678.pdf.jpgafe36d60b198bc0a87e3cc325663fa03MD5310183/756902018-10-11 09:18:29.27oai:www.lume.ufrgs.br:10183/75690Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-11T12:18:29Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration
title Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration
spellingShingle Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration
Azevedo, Ricardo Lessa
Placas (Engenharia)
Elementos finitos
Estruturas em casca
Plates and Shells
Dynamic Analysis
Geometric Nonlinearity
Finite Elements
title_short Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration
title_full Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration
title_fullStr Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration
title_full_unstemmed Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration
title_sort Geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral finite elements with reduced integration
author Azevedo, Ricardo Lessa
author_facet Azevedo, Ricardo Lessa
Awruch, Armando Miguel
author_role author
author2 Awruch, Armando Miguel
author2_role author
dc.contributor.author.fl_str_mv Azevedo, Ricardo Lessa
Awruch, Armando Miguel
dc.subject.por.fl_str_mv Placas (Engenharia)
Elementos finitos
Estruturas em casca
topic Placas (Engenharia)
Elementos finitos
Estruturas em casca
Plates and Shells
Dynamic Analysis
Geometric Nonlinearity
Finite Elements
dc.subject.eng.fl_str_mv Plates and Shells
Dynamic Analysis
Geometric Nonlinearity
Finite Elements
description This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.
publishDate 1999
dc.date.issued.fl_str_mv 1999
dc.date.accessioned.fl_str_mv 2013-07-09T01:51:49Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/75690
dc.identifier.issn.pt_BR.fl_str_mv 0100-7386
dc.identifier.nrb.pt_BR.fl_str_mv 000276678
identifier_str_mv 0100-7386
000276678
url http://hdl.handle.net/10183/75690
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Revista brasileira de ciências mecânicas. Rio de Janeiro. Vol. 21, n. 3 (1999), p. 446-462
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/75690/1/000276678.pdf
http://www.lume.ufrgs.br/bitstream/10183/75690/2/000276678.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/75690/3/000276678.pdf.jpg
bitstream.checksum.fl_str_mv d50171c0fe92b4fb211dc96362d785ee
259b3d1a82a016ad4b32aa2f62ac83ce
afe36d60b198bc0a87e3cc325663fa03
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447499098292224