Dynamic positional finite element method applied to nonlinear geometric 3D solids

Detalhes bibliográficos
Autor(a) principal: Maciel, Daniel Nelson
Data de Publicação: 2010
Outros Autores: Coda, Humberto B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30795
Resumo: This paper presents the dynamic positional nonlinear geometric formulation for tridimensional problems. The positional formulation is an alternative approach for non linear problems, since it considers nodal positions as variables of the nonlinear system instead of displacements as usual in literature. In order to avoid locking, tetrahedral third-order isoparametric finite element (20 nodes) is implemented for both displacement and stress field. Regarding to dynamic forces, it is considered the consistent mass matrix and damping effects proportional to the body mass. The well-known Newmark algorithm for time integration is applied. Some simple numerical examples are presented in order to show the accuracy of the proposed formulation
id UFRN_e0aaaa89cb19d73ab39de921f7f19d3e
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30795
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Maciel, Daniel NelsonCoda, Humberto B.2020-11-30T23:53:20Z2020-11-30T23:53:20Z2010-11MACIEL, Daniel Nelson; CODA, Humberto Breves . Dynamic positional finite element method applied to nonlinear geometric 3D solids. Mecánica Computacional, v. XXIX, p. 4377-4387, 2010. Disponível em: https://cimec.org.ar/ojs/index.php/mc/article/view/3311. Acesso em: 19 nov. 2020.2591-3522https://repositorio.ufrn.br/handle/123456789/30795Asociación Argentina de Mecánica ComputacionalSolidsGeometric nonlinearityDynamic problemsFinite elementsDynamic positional finite element method applied to nonlinear geometric 3D solidsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThis paper presents the dynamic positional nonlinear geometric formulation for tridimensional problems. The positional formulation is an alternative approach for non linear problems, since it considers nodal positions as variables of the nonlinear system instead of displacements as usual in literature. In order to avoid locking, tetrahedral third-order isoparametric finite element (20 nodes) is implemented for both displacement and stress field. Regarding to dynamic forces, it is considered the consistent mass matrix and damping effects proportional to the body mass. The well-known Newmark algorithm for time integration is applied. Some simple numerical examples are presented in order to show the accuracy of the proposed formulationengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALDynamicPositionalFinite_MACIEL_2010.pdfDynamicPositionalFinite_MACIEL_2010.pdfapplication/pdf419381https://repositorio.ufrn.br/bitstream/123456789/30795/1/DynamicPositionalFinite_MACIEL_2010.pdf68814dea039a3876c20197f7be99c896MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30795/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52TEXTDynamicPositionalFinite_MACIEL_2010.pdf.txtDynamicPositionalFinite_MACIEL_2010.pdf.txtExtracted texttext/plain20390https://repositorio.ufrn.br/bitstream/123456789/30795/3/DynamicPositionalFinite_MACIEL_2010.pdf.txtcf4a38cfd17d83381cd10cc00e09b8a2MD53THUMBNAILDynamicPositionalFinite_MACIEL_2010.pdf.jpgDynamicPositionalFinite_MACIEL_2010.pdf.jpgGenerated Thumbnailimage/jpeg1458https://repositorio.ufrn.br/bitstream/123456789/30795/4/DynamicPositionalFinite_MACIEL_2010.pdf.jpgbc8bf1508a0e22661b0fec8fbddfc986MD54123456789/307952020-12-06 05:06:41.335oai:https://repositorio.ufrn.br:123456789/30795Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-12-06T08:06:41Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Dynamic positional finite element method applied to nonlinear geometric 3D solids
title Dynamic positional finite element method applied to nonlinear geometric 3D solids
spellingShingle Dynamic positional finite element method applied to nonlinear geometric 3D solids
Maciel, Daniel Nelson
Solids
Geometric nonlinearity
Dynamic problems
Finite elements
title_short Dynamic positional finite element method applied to nonlinear geometric 3D solids
title_full Dynamic positional finite element method applied to nonlinear geometric 3D solids
title_fullStr Dynamic positional finite element method applied to nonlinear geometric 3D solids
title_full_unstemmed Dynamic positional finite element method applied to nonlinear geometric 3D solids
title_sort Dynamic positional finite element method applied to nonlinear geometric 3D solids
author Maciel, Daniel Nelson
author_facet Maciel, Daniel Nelson
Coda, Humberto B.
author_role author
author2 Coda, Humberto B.
author2_role author
dc.contributor.author.fl_str_mv Maciel, Daniel Nelson
Coda, Humberto B.
dc.subject.por.fl_str_mv Solids
Geometric nonlinearity
Dynamic problems
Finite elements
topic Solids
Geometric nonlinearity
Dynamic problems
Finite elements
description This paper presents the dynamic positional nonlinear geometric formulation for tridimensional problems. The positional formulation is an alternative approach for non linear problems, since it considers nodal positions as variables of the nonlinear system instead of displacements as usual in literature. In order to avoid locking, tetrahedral third-order isoparametric finite element (20 nodes) is implemented for both displacement and stress field. Regarding to dynamic forces, it is considered the consistent mass matrix and damping effects proportional to the body mass. The well-known Newmark algorithm for time integration is applied. Some simple numerical examples are presented in order to show the accuracy of the proposed formulation
publishDate 2010
dc.date.issued.fl_str_mv 2010-11
dc.date.accessioned.fl_str_mv 2020-11-30T23:53:20Z
dc.date.available.fl_str_mv 2020-11-30T23:53:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv MACIEL, Daniel Nelson; CODA, Humberto Breves . Dynamic positional finite element method applied to nonlinear geometric 3D solids. Mecánica Computacional, v. XXIX, p. 4377-4387, 2010. Disponível em: https://cimec.org.ar/ojs/index.php/mc/article/view/3311. Acesso em: 19 nov. 2020.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30795
dc.identifier.issn.none.fl_str_mv 2591-3522
identifier_str_mv MACIEL, Daniel Nelson; CODA, Humberto Breves . Dynamic positional finite element method applied to nonlinear geometric 3D solids. Mecánica Computacional, v. XXIX, p. 4377-4387, 2010. Disponível em: https://cimec.org.ar/ojs/index.php/mc/article/view/3311. Acesso em: 19 nov. 2020.
2591-3522
url https://repositorio.ufrn.br/handle/123456789/30795
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30795/1/DynamicPositionalFinite_MACIEL_2010.pdf
https://repositorio.ufrn.br/bitstream/123456789/30795/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30795/3/DynamicPositionalFinite_MACIEL_2010.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30795/4/DynamicPositionalFinite_MACIEL_2010.pdf.jpg
bitstream.checksum.fl_str_mv 68814dea039a3876c20197f7be99c896
e9597aa2854d128fd968be5edc8a28d9
cf4a38cfd17d83381cd10cc00e09b8a2
bc8bf1508a0e22661b0fec8fbddfc986
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832874247946240