Cratering induced by slow highly charged ions on ultrathin PMMA films

Detalhes bibliográficos
Autor(a) principal: Thomaz, Raquel Silva
Data de Publicação: 2022
Outros Autores: Ernst, Philipp, Grande, Pedro Luis, Schleberger, M., Papaleo, Ricardo Meurer
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/257893
Resumo: Highly charged ions are a well-known tool for the nanostructuring of surfaces. We report on the thickness dependence of nanostructures produced by single 260 keV Xe38+ ions on ultrathin poly(methyl methacrylate) (PMMA) films (1 nm to 60 nm) deposited onto Si substrates. The nanostructures induced by slow highly charged ions are rimless craters with a diameter of around 15 nm, which are roughly independent of the thickness of the films down to layers of about 2 nm. The crater depth and thus the overall crater volume are, however, thickness-dependent, decreasing in size in films thinner than ~25 nm. Our findings indicate that although the potential energy of the highly charged ions is the predominant source of deposited energy, the depth of the excited material contributing to crater formation is much larger than the neutralization depth of the ions, which occurs in the first nanometer of the solid at the projectile velocity employed here. This suggests synergism between kinetic and potential-driven processes in nanostructure formation in PMMA.
id UFRGS-2_9b95e9ecd44e26fce3a97ccf2eb38014
oai_identifier_str oai:www.lume.ufrgs.br:10183/257893
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Thomaz, Raquel SilvaErnst, PhilippGrande, Pedro LuisSchleberger, M.Papaleo, Ricardo Meurer2023-05-10T03:27:44Z20222218-2004http://hdl.handle.net/10183/257893001162367Highly charged ions are a well-known tool for the nanostructuring of surfaces. We report on the thickness dependence of nanostructures produced by single 260 keV Xe38+ ions on ultrathin poly(methyl methacrylate) (PMMA) films (1 nm to 60 nm) deposited onto Si substrates. The nanostructures induced by slow highly charged ions are rimless craters with a diameter of around 15 nm, which are roughly independent of the thickness of the films down to layers of about 2 nm. The crater depth and thus the overall crater volume are, however, thickness-dependent, decreasing in size in films thinner than ~25 nm. Our findings indicate that although the potential energy of the highly charged ions is the predominant source of deposited energy, the depth of the excited material contributing to crater formation is much larger than the neutralization depth of the ions, which occurs in the first nanometer of the solid at the projectile velocity employed here. This suggests synergism between kinetic and potential-driven processes in nanostructure formation in PMMA.application/pdfengAtoms. Basel. Vol. 10, no. 4 (Dec. 2022), 96, 7 p.NanoestruturasFilmes finosÍonsPolimetil metacrilatoSlow highly charged ionsNanostructuresRadiation effectsSingle-ion impactsPolymer thin filmsPMMACratering induced by slow highly charged ions on ultrathin PMMA filmsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001162367.pdf.txt001162367.pdf.txtExtracted Texttext/plain27150http://www.lume.ufrgs.br/bitstream/10183/257893/2/001162367.pdf.txtafb42667705406977ee10522b99fb2ccMD52ORIGINAL001162367.pdfTexto completo (inglês)application/pdf10577510http://www.lume.ufrgs.br/bitstream/10183/257893/1/001162367.pdf61ec69e670b8bbf0c89c495d424fae28MD5110183/2578932024-05-24 06:42:03.677868oai:www.lume.ufrgs.br:10183/257893Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-05-24T09:42:03Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Cratering induced by slow highly charged ions on ultrathin PMMA films
title Cratering induced by slow highly charged ions on ultrathin PMMA films
spellingShingle Cratering induced by slow highly charged ions on ultrathin PMMA films
Thomaz, Raquel Silva
Nanoestruturas
Filmes finos
Íons
Polimetil metacrilato
Slow highly charged ions
Nanostructures
Radiation effects
Single-ion impacts
Polymer thin films
PMMA
title_short Cratering induced by slow highly charged ions on ultrathin PMMA films
title_full Cratering induced by slow highly charged ions on ultrathin PMMA films
title_fullStr Cratering induced by slow highly charged ions on ultrathin PMMA films
title_full_unstemmed Cratering induced by slow highly charged ions on ultrathin PMMA films
title_sort Cratering induced by slow highly charged ions on ultrathin PMMA films
author Thomaz, Raquel Silva
author_facet Thomaz, Raquel Silva
Ernst, Philipp
Grande, Pedro Luis
Schleberger, M.
Papaleo, Ricardo Meurer
author_role author
author2 Ernst, Philipp
Grande, Pedro Luis
Schleberger, M.
Papaleo, Ricardo Meurer
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Thomaz, Raquel Silva
Ernst, Philipp
Grande, Pedro Luis
Schleberger, M.
Papaleo, Ricardo Meurer
dc.subject.por.fl_str_mv Nanoestruturas
Filmes finos
Íons
Polimetil metacrilato
topic Nanoestruturas
Filmes finos
Íons
Polimetil metacrilato
Slow highly charged ions
Nanostructures
Radiation effects
Single-ion impacts
Polymer thin films
PMMA
dc.subject.eng.fl_str_mv Slow highly charged ions
Nanostructures
Radiation effects
Single-ion impacts
Polymer thin films
PMMA
description Highly charged ions are a well-known tool for the nanostructuring of surfaces. We report on the thickness dependence of nanostructures produced by single 260 keV Xe38+ ions on ultrathin poly(methyl methacrylate) (PMMA) films (1 nm to 60 nm) deposited onto Si substrates. The nanostructures induced by slow highly charged ions are rimless craters with a diameter of around 15 nm, which are roughly independent of the thickness of the films down to layers of about 2 nm. The crater depth and thus the overall crater volume are, however, thickness-dependent, decreasing in size in films thinner than ~25 nm. Our findings indicate that although the potential energy of the highly charged ions is the predominant source of deposited energy, the depth of the excited material contributing to crater formation is much larger than the neutralization depth of the ions, which occurs in the first nanometer of the solid at the projectile velocity employed here. This suggests synergism between kinetic and potential-driven processes in nanostructure formation in PMMA.
publishDate 2022
dc.date.issued.fl_str_mv 2022
dc.date.accessioned.fl_str_mv 2023-05-10T03:27:44Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/257893
dc.identifier.issn.pt_BR.fl_str_mv 2218-2004
dc.identifier.nrb.pt_BR.fl_str_mv 001162367
identifier_str_mv 2218-2004
001162367
url http://hdl.handle.net/10183/257893
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Atoms. Basel. Vol. 10, no. 4 (Dec. 2022), 96, 7 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/257893/2/001162367.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/257893/1/001162367.pdf
bitstream.checksum.fl_str_mv afb42667705406977ee10522b99fb2cc
61ec69e670b8bbf0c89c495d424fae28
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801225087763873792