Identificação automática de alvos padronizados através de redes neurais

Detalhes bibliográficos
Autor(a) principal: Pinto, Carlos Fernando Carlim
Data de Publicação: 2009
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/7694
Resumo: Neste trabalho investigou-se o comportamento de alguns padrões de alvos e avaliou-se qual padrão apresentou os maiores índices de acerto para uma rede neural. Os padrões a serem reconhecidos são alvos pré-definidos utilizados no processo de calibração dos sistemas de dimensionamento por estereofotogrametria e de reconstrução de cenas 2D e 3D. O processo de calibração desses sistemas requer a ação humana de relacionar o pixel central de cada alvo à sua posição espacial real, relativa a um ponto de espaço. Este é um processo demorado, que requer precisão e paciência do apurador, que está sujeito a erros devido à repetição de apurações e de similaridade dos alvos. A associação equívocada de um alvo invalida toda a calibração. Como forma de evitar tais erros e automatizar o processo de calibração, foram treinadas redes neurais capazes de identificar, em uma imagem, os pixels centrais dos alvos, para que uma rotina possa, automaticamente, associá-los aos pontos do objeto de calibração. A melhor rede projetada apresentou um desempenho com erro próximo de zero em seu treinamento, considerando um pré-processamento com Análise de Componentes Principais (PCA) e um pós-processamento de busca de centros de classes por “clusterização”.
id UFRJ_7af7370e4cc90165f016a857a5766dc4
oai_identifier_str oai:pantheon.ufrj.br:11422/7694
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Pinto, Carlos Fernando CarlimGomes, José Gabriel Rodriguez CarneiroPetraglia, Mariane RemboldTorres, Julio Cesar Boscher2019-05-03T13:31:21Z2023-11-30T03:03:02Z2009-06http://hdl.handle.net/11422/7694Submitted by Moreno Barros (moreno@ct.ufrj.br) on 2019-05-02T15:14:11Z No. of bitstreams: 1 monopoli10002629.pdf: 3649960 bytes, checksum: b4bd963d16b4a71e442a1e4af432b3df (MD5)Approved for entry into archive by Moreno Barros (moreno@ct.ufrj.br) on 2019-05-03T13:31:21Z (GMT) No. of bitstreams: 1 monopoli10002629.pdf: 3649960 bytes, checksum: b4bd963d16b4a71e442a1e4af432b3df (MD5)Made available in DSpace on 2019-05-03T13:31:21Z (GMT). No. of bitstreams: 1 monopoli10002629.pdf: 3649960 bytes, checksum: b4bd963d16b4a71e442a1e4af432b3df (MD5) Previous issue date: 2009-06Neste trabalho investigou-se o comportamento de alguns padrões de alvos e avaliou-se qual padrão apresentou os maiores índices de acerto para uma rede neural. Os padrões a serem reconhecidos são alvos pré-definidos utilizados no processo de calibração dos sistemas de dimensionamento por estereofotogrametria e de reconstrução de cenas 2D e 3D. O processo de calibração desses sistemas requer a ação humana de relacionar o pixel central de cada alvo à sua posição espacial real, relativa a um ponto de espaço. Este é um processo demorado, que requer precisão e paciência do apurador, que está sujeito a erros devido à repetição de apurações e de similaridade dos alvos. A associação equívocada de um alvo invalida toda a calibração. Como forma de evitar tais erros e automatizar o processo de calibração, foram treinadas redes neurais capazes de identificar, em uma imagem, os pixels centrais dos alvos, para que uma rotina possa, automaticamente, associá-los aos pontos do objeto de calibração. A melhor rede projetada apresentou um desempenho com erro próximo de zero em seu treinamento, considerando um pré-processamento com Análise de Componentes Principais (PCA) e um pós-processamento de busca de centros de classes por “clusterização”.porUniversidade Federal do Rio de JaneiroUFRJBrasilEscola PolitécnicaCNPQ::ENGENHARIASProcessamento de imagensRede neuralIdentificação automática de alvos padronizados através de redes neuraisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisabertoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJORIGINALmonopoli10002629.pdfmonopoli10002629.pdfapplication/pdf3649960http://pantheon.ufrj.br:80/bitstream/11422/7694/1/monopoli10002629.pdfb4bd963d16b4a71e442a1e4af432b3dfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81853http://pantheon.ufrj.br:80/bitstream/11422/7694/2/license.txtdd32849f2bfb22da963c3aac6e26e255MD5211422/76942023-11-30 00:03:02.813oai:pantheon.ufrj.br:11422/7694TElDRU7Dh0EgTsODTy1FWENMVVNJVkEgREUgRElTVFJJQlVJw4fDg08KCkFvIGFzc2luYXIgZSBlbnRyZWdhciBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBvKHMpIGF1dG9yKGVzKSBvdSBwcm9wcmlldMOhcmlvKHMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBjb25jZWRlKG0pIGFvIFJlcG9zaXTDs3JpbyBQYW50aGVvbiBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gZGUgSmFuZWlybyAoVUZSSikgbyBkaXJlaXRvIG7Do28gLSBleGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vKSBlbSB0b2RvIG8gbXVuZG8sIGVtIGZvcm1hdG8gZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8sIG1hcyBuw6NvIGxpbWl0YWRvIGEgw6F1ZGlvIGUvb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZSSiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhZHV6aXIgYSBhcHJlc2VudGHDp8OjbyBkZSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGEgZmluYWxpZGFkZSBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVRlJKIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXNzYSBzdWJtaXNzw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8OjbyBkaWdpdGFsLgoKRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZSB2b2PDqiB0ZW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIGEgc3VhIGFwcmVzZW50YcOnw6NvLCBjb20gbyBtZWxob3IgZGUgc2V1cyBjb25oZWNpbWVudG9zLCBuw6NvIGluZnJpbmdpIGRpcmVpdG9zIGF1dG9yYWlzIGRlIHRlcmNlaXJvcy4KClNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCB2b2PDqiBuw6NvIHRlbSBkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmNlZGUgYSBVRlJKIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIHN1Ym1pc3PDo28uCgpTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBiYXNlYWRvIGVtIHRyYWJhbGhvIHF1ZSBmb2ksIG91IHRlbSBzaWRvIHBhdHJvY2luYWRvIG91IGFwb2lhZG8gcG9yIHVtYSBhZ8OqbmNpYSBvdSBvdXRybyhzKSBvcmdhbmlzbW8ocykgcXVlIG7Do28gYSBVRlJKLCB2b2PDqiBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWxxdWVyIGRpcmVpdG8gZGUgUkVWSVPDg08gb3UgZGUgb3V0cmFzIG9icmlnYcOnw7VlcyByZXF1ZXJpZGFzIHBvciBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUkogaXLDoSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8ocykgc2V1KHMpIG5vbWUocykgY29tbyBhdXRvcihlcykgb3UgcHJvcHJpZXTDoXJpbyhzKSBkYSBzdWJtaXNzw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EsIG5vIGF0byBkZSBzdWJtaXNzw6NvLgo=Repositório de PublicaçõesPUBhttp://www.pantheon.ufrj.br/oai/requestopendoar:2023-11-30T03:03:02Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.pt_BR.fl_str_mv Identificação automática de alvos padronizados através de redes neurais
title Identificação automática de alvos padronizados através de redes neurais
spellingShingle Identificação automática de alvos padronizados através de redes neurais
Pinto, Carlos Fernando Carlim
CNPQ::ENGENHARIAS
Processamento de imagens
Rede neural
title_short Identificação automática de alvos padronizados através de redes neurais
title_full Identificação automática de alvos padronizados através de redes neurais
title_fullStr Identificação automática de alvos padronizados através de redes neurais
title_full_unstemmed Identificação automática de alvos padronizados através de redes neurais
title_sort Identificação automática de alvos padronizados através de redes neurais
author Pinto, Carlos Fernando Carlim
author_facet Pinto, Carlos Fernando Carlim
author_role author
dc.contributor.advisorCo1.none.fl_str_mv Gomes, José Gabriel Rodriguez Carneiro
dc.contributor.author.fl_str_mv Pinto, Carlos Fernando Carlim
dc.contributor.referee1.fl_str_mv Petraglia, Mariane Rembold
dc.contributor.advisor1.fl_str_mv Torres, Julio Cesar Boscher
contributor_str_mv Petraglia, Mariane Rembold
Torres, Julio Cesar Boscher
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
topic CNPQ::ENGENHARIAS
Processamento de imagens
Rede neural
dc.subject.por.fl_str_mv Processamento de imagens
Rede neural
description Neste trabalho investigou-se o comportamento de alguns padrões de alvos e avaliou-se qual padrão apresentou os maiores índices de acerto para uma rede neural. Os padrões a serem reconhecidos são alvos pré-definidos utilizados no processo de calibração dos sistemas de dimensionamento por estereofotogrametria e de reconstrução de cenas 2D e 3D. O processo de calibração desses sistemas requer a ação humana de relacionar o pixel central de cada alvo à sua posição espacial real, relativa a um ponto de espaço. Este é um processo demorado, que requer precisão e paciência do apurador, que está sujeito a erros devido à repetição de apurações e de similaridade dos alvos. A associação equívocada de um alvo invalida toda a calibração. Como forma de evitar tais erros e automatizar o processo de calibração, foram treinadas redes neurais capazes de identificar, em uma imagem, os pixels centrais dos alvos, para que uma rotina possa, automaticamente, associá-los aos pontos do objeto de calibração. A melhor rede projetada apresentou um desempenho com erro próximo de zero em seu treinamento, considerando um pré-processamento com Análise de Componentes Principais (PCA) e um pós-processamento de busca de centros de classes por “clusterização”.
publishDate 2009
dc.date.issued.fl_str_mv 2009-06
dc.date.accessioned.fl_str_mv 2019-05-03T13:31:21Z
dc.date.available.fl_str_mv 2023-11-30T03:03:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/7694
url http://hdl.handle.net/11422/7694
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.publisher.initials.fl_str_mv UFRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola Politécnica
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
bitstream.url.fl_str_mv http://pantheon.ufrj.br:80/bitstream/11422/7694/1/monopoli10002629.pdf
http://pantheon.ufrj.br:80/bitstream/11422/7694/2/license.txt
bitstream.checksum.fl_str_mv b4bd963d16b4a71e442a1e4af432b3df
dd32849f2bfb22da963c3aac6e26e255
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv
_version_ 1784097137007525888