Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprova
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/49203 |
Resumo: | O software Multiprova foi muito utilizado durante os períodos de ensino remoto na Universidade Federal do Rio Grande do Norte (UFRN), com a volta presencial das aulas o processo de correção de provas precisou ser melhorado para facilitar a adaptação do sistema às aulas presenciais, uma dessas melhorias foi a correção automática de cartões respostas dos alunos. O reconhecimento ótico de caracteres é uma técnica recente muito utilizada para máquinas realizarem a leitura de textos escrito por humanos. O objetivo central do trabalho é desenvolver um processo de reconhecimento de caracteres manuscritos a fim de melhorar e facilitar a correção de provas no software Multiprova. Para essa finalidade foram utilizadas redes neurais convolucionais para realizar essa tarefa. Com a coleta de imagens feitas pelos próprios alunos da UFRN, foram analisados e comparados cenários diferentes com o incremento das configurações das redes com o intuito de gerar redes neurais com as melhores taxas de precisão. Com isso foram obtidos ótimos níveis de acurácia, permitindo alta confiabilidade no software e mais segurança e facilidade na correção das provas. |
id |
UFRN_17ca156f6fda50091aaccc919f18c3d3 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/49203 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Silva Filho, Darlan de Castrohttp://lattes.cnpq.br/7784696971048666http://lattes.cnpq.br/8709900833456787Santana Junior, Orivaldo Vieira dehttp://lattes.cnpq.br/5050555219716698Medeiros, Rex Antonio da Costahttp://lattes.cnpq.br/2840084735974670Peixoto, Helton Maia2022-08-23T12:11:25Z2022-08-23T12:11:25Z2022-07-22SILVA FILHO, Darlan de Castro. Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas Correções do Sistema multiprova. 2022. 62f.Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) - Departamento de Engenharia de Computação e Automação, Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022.https://repositorio.ufrn.br/handle/123456789/49203O software Multiprova foi muito utilizado durante os períodos de ensino remoto na Universidade Federal do Rio Grande do Norte (UFRN), com a volta presencial das aulas o processo de correção de provas precisou ser melhorado para facilitar a adaptação do sistema às aulas presenciais, uma dessas melhorias foi a correção automática de cartões respostas dos alunos. O reconhecimento ótico de caracteres é uma técnica recente muito utilizada para máquinas realizarem a leitura de textos escrito por humanos. O objetivo central do trabalho é desenvolver um processo de reconhecimento de caracteres manuscritos a fim de melhorar e facilitar a correção de provas no software Multiprova. Para essa finalidade foram utilizadas redes neurais convolucionais para realizar essa tarefa. Com a coleta de imagens feitas pelos próprios alunos da UFRN, foram analisados e comparados cenários diferentes com o incremento das configurações das redes com o intuito de gerar redes neurais com as melhores taxas de precisão. Com isso foram obtidos ótimos níveis de acurácia, permitindo alta confiabilidade no software e mais segurança e facilidade na correção das provas.The Multiprova software was widely used during remote teaching at the Federal University of Rio Grande do Norte. With the return of classroom classes, the exam correction process needed to be improved to facilitate the adaptation of the system to presential courses, one of these improvements was the automatic correction of student response cards. Optical character recognition is a recent technique widely used for machines to read text written by humans. This academic work aims to develop a handwritten character recognition process to improve and facilitate exam correction in Multiprova software. For this purpose, convolutional neural networks were used to perform this task. With the UFRN student’s images, different scenarios were analyzed and compared with the increment of network configurations to generate neural networks with the best accuracy rates. As a result, excellent levels of accuracy were obtained, allowing high reliability in the software and more security and ease in exam correction.Universidade Federal do Rio Grande do NorteEngenharia de ComputaçãoUFRNBrasilDepartamento de Engenharia de Computação e AutomaçãoReconhecimento ótico de caracteresInteligência artificialAprendizado de máquinaRedes neurais convolucionaisReconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprovainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALReconhecimentoDeCaracteres_Silva_2022.pdfReconhecimentoDeCaracteres_Silva_2022.pdfapplication/pdf3337223https://repositorio.ufrn.br/bitstream/123456789/49203/1/ReconhecimentoDeCaracteres_Silva_2022.pdf6b0839738020e697202616817e50078aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/49203/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52123456789/492032022-08-23 09:11:27.523oai:https://repositorio.ufrn.br:123456789/49203Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-08-23T12:11:27Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprova |
title |
Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprova |
spellingShingle |
Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprova Silva Filho, Darlan de Castro Reconhecimento ótico de caracteres Inteligência artificial Aprendizado de máquina Redes neurais convolucionais |
title_short |
Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprova |
title_full |
Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprova |
title_fullStr |
Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprova |
title_full_unstemmed |
Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprova |
title_sort |
Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas correções do sistema multiprova |
author |
Silva Filho, Darlan de Castro |
author_facet |
Silva Filho, Darlan de Castro |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7784696971048666 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8709900833456787 |
dc.contributor.referees1.none.fl_str_mv |
Santana Junior, Orivaldo Vieira de |
dc.contributor.referees1Lattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5050555219716698 |
dc.contributor.referees2.none.fl_str_mv |
Medeiros, Rex Antonio da Costa |
dc.contributor.referees2Lattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/2840084735974670 |
dc.contributor.author.fl_str_mv |
Silva Filho, Darlan de Castro |
dc.contributor.advisor1.fl_str_mv |
Peixoto, Helton Maia |
contributor_str_mv |
Peixoto, Helton Maia |
dc.subject.por.fl_str_mv |
Reconhecimento ótico de caracteres Inteligência artificial Aprendizado de máquina Redes neurais convolucionais |
topic |
Reconhecimento ótico de caracteres Inteligência artificial Aprendizado de máquina Redes neurais convolucionais |
description |
O software Multiprova foi muito utilizado durante os períodos de ensino remoto na Universidade Federal do Rio Grande do Norte (UFRN), com a volta presencial das aulas o processo de correção de provas precisou ser melhorado para facilitar a adaptação do sistema às aulas presenciais, uma dessas melhorias foi a correção automática de cartões respostas dos alunos. O reconhecimento ótico de caracteres é uma técnica recente muito utilizada para máquinas realizarem a leitura de textos escrito por humanos. O objetivo central do trabalho é desenvolver um processo de reconhecimento de caracteres manuscritos a fim de melhorar e facilitar a correção de provas no software Multiprova. Para essa finalidade foram utilizadas redes neurais convolucionais para realizar essa tarefa. Com a coleta de imagens feitas pelos próprios alunos da UFRN, foram analisados e comparados cenários diferentes com o incremento das configurações das redes com o intuito de gerar redes neurais com as melhores taxas de precisão. Com isso foram obtidos ótimos níveis de acurácia, permitindo alta confiabilidade no software e mais segurança e facilidade na correção das provas. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-08-23T12:11:25Z |
dc.date.available.fl_str_mv |
2022-08-23T12:11:25Z |
dc.date.issued.fl_str_mv |
2022-07-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA FILHO, Darlan de Castro. Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas Correções do Sistema multiprova. 2022. 62f.Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) - Departamento de Engenharia de Computação e Automação, Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/49203 |
identifier_str_mv |
SILVA FILHO, Darlan de Castro. Reconhecimento de caracteres utilizando redes neurais convolucionais para auxiliar nas Correções do Sistema multiprova. 2022. 62f.Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) - Departamento de Engenharia de Computação e Automação, Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022. |
url |
https://repositorio.ufrn.br/handle/123456789/49203 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.publisher.program.fl_str_mv |
Engenharia de Computação |
dc.publisher.initials.fl_str_mv |
UFRN |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Engenharia de Computação e Automação |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/49203/1/ReconhecimentoDeCaracteres_Silva_2022.pdf https://repositorio.ufrn.br/bitstream/123456789/49203/2/license.txt |
bitstream.checksum.fl_str_mv |
6b0839738020e697202616817e50078a e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833045103968256 |