A generalised NGINAR(1) process with inflated-parameter geometric counting series

Detalhes bibliográficos
Autor(a) principal: Borges, Patrick
Data de Publicação: 2017
Outros Autores: Bourguignon, Marcelo, Molinares, Fabio Fajardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/49682
Resumo: In this paper we propose a new stationary first-order non-negative integer valued autoregressive process with geometric marginals based on a generalised version of the negative binomial thinning operator. In this manner we obtain another process that we refer to as a generalised stationary integer-valued autoregressive process of the first order with geometric marginals. This new process will enable one to tackle the problem of overdispersion inherent in the analysis of integer-valued time series data, and contains the new geometric process as a particular case. In addition various properties of the new process, such as conditional distribution, autocorrelation structure and innovation structure, are derived. We discuss conditional maximum likelihood estimation of the model parameters. We evaluate the performance of the conditional maximum likelihood estimators by a Monte Carlo study. The proposed process is fitted to time series of number of weekly sales (economics) and weekly number of syphilis cases (medicine) illustrating its capabilities in challenging cases of highly overdispersed count data.
id UFRN_2822f17cfd3fde73d509dd2a8098e99b
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/49682
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Borges, PatrickBourguignon, MarceloMolinares, Fabio Fajardo2022-11-08T19:28:40Z2022-11-08T19:28:40Z2017BORGES, Patrick; BOURGUIGNON, Marcelo; MOLINARES, Fabio F. A generalised NGINAR(1) process with inflated-parameter geometric counting series. Australian and New Zeland Jounal of Statistics, v. 59, p. 137-150, 2017. Disponível em: http://onlinelibrary.wiley.com/doi/10.1111/anzs.12184/abstract. Acesso em: 07 dez. 2017https://repositorio.ufrn.br/handle/123456789/4968210.1111/anzs.12184Australian and New Zeland Jounal of StatisticsNegative binomial thinningEstimationGeometric marginalEverdispersionA generalised NGINAR(1) process with inflated-parameter geometric counting seriesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper we propose a new stationary first-order non-negative integer valued autoregressive process with geometric marginals based on a generalised version of the negative binomial thinning operator. In this manner we obtain another process that we refer to as a generalised stationary integer-valued autoregressive process of the first order with geometric marginals. This new process will enable one to tackle the problem of overdispersion inherent in the analysis of integer-valued time series data, and contains the new geometric process as a particular case. In addition various properties of the new process, such as conditional distribution, autocorrelation structure and innovation structure, are derived. We discuss conditional maximum likelihood estimation of the model parameters. We evaluate the performance of the conditional maximum likelihood estimators by a Monte Carlo study. The proposed process is fitted to time series of number of weekly sales (economics) and weekly number of syphilis cases (medicine) illustrating its capabilities in challenging cases of highly overdispersed count data.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/49682/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/496822022-11-08 16:31:51.744oai:https://repositorio.ufrn.br:123456789/49682Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-11-08T19:31:51Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv A generalised NGINAR(1) process with inflated-parameter geometric counting series
title A generalised NGINAR(1) process with inflated-parameter geometric counting series
spellingShingle A generalised NGINAR(1) process with inflated-parameter geometric counting series
Borges, Patrick
Negative binomial thinning
Estimation
Geometric marginal
Everdispersion
title_short A generalised NGINAR(1) process with inflated-parameter geometric counting series
title_full A generalised NGINAR(1) process with inflated-parameter geometric counting series
title_fullStr A generalised NGINAR(1) process with inflated-parameter geometric counting series
title_full_unstemmed A generalised NGINAR(1) process with inflated-parameter geometric counting series
title_sort A generalised NGINAR(1) process with inflated-parameter geometric counting series
author Borges, Patrick
author_facet Borges, Patrick
Bourguignon, Marcelo
Molinares, Fabio Fajardo
author_role author
author2 Bourguignon, Marcelo
Molinares, Fabio Fajardo
author2_role author
author
dc.contributor.author.fl_str_mv Borges, Patrick
Bourguignon, Marcelo
Molinares, Fabio Fajardo
dc.subject.por.fl_str_mv Negative binomial thinning
Estimation
Geometric marginal
Everdispersion
topic Negative binomial thinning
Estimation
Geometric marginal
Everdispersion
description In this paper we propose a new stationary first-order non-negative integer valued autoregressive process with geometric marginals based on a generalised version of the negative binomial thinning operator. In this manner we obtain another process that we refer to as a generalised stationary integer-valued autoregressive process of the first order with geometric marginals. This new process will enable one to tackle the problem of overdispersion inherent in the analysis of integer-valued time series data, and contains the new geometric process as a particular case. In addition various properties of the new process, such as conditional distribution, autocorrelation structure and innovation structure, are derived. We discuss conditional maximum likelihood estimation of the model parameters. We evaluate the performance of the conditional maximum likelihood estimators by a Monte Carlo study. The proposed process is fitted to time series of number of weekly sales (economics) and weekly number of syphilis cases (medicine) illustrating its capabilities in challenging cases of highly overdispersed count data.
publishDate 2017
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2022-11-08T19:28:40Z
dc.date.available.fl_str_mv 2022-11-08T19:28:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv BORGES, Patrick; BOURGUIGNON, Marcelo; MOLINARES, Fabio F. A generalised NGINAR(1) process with inflated-parameter geometric counting series. Australian and New Zeland Jounal of Statistics, v. 59, p. 137-150, 2017. Disponível em: http://onlinelibrary.wiley.com/doi/10.1111/anzs.12184/abstract. Acesso em: 07 dez. 2017
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/49682
dc.identifier.doi.none.fl_str_mv 10.1111/anzs.12184
identifier_str_mv BORGES, Patrick; BOURGUIGNON, Marcelo; MOLINARES, Fabio F. A generalised NGINAR(1) process with inflated-parameter geometric counting series. Australian and New Zeland Jounal of Statistics, v. 59, p. 137-150, 2017. Disponível em: http://onlinelibrary.wiley.com/doi/10.1111/anzs.12184/abstract. Acesso em: 07 dez. 2017
10.1111/anzs.12184
url https://repositorio.ufrn.br/handle/123456789/49682
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Australian and New Zeland Jounal of Statistics
publisher.none.fl_str_mv Australian and New Zeland Jounal of Statistics
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/49682/2/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832996116594688