A generalised NGINAR(1) process with inflated-parameter geometric counting series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/49682 |
Resumo: | In this paper we propose a new stationary first-order non-negative integer valued autoregressive process with geometric marginals based on a generalised version of the negative binomial thinning operator. In this manner we obtain another process that we refer to as a generalised stationary integer-valued autoregressive process of the first order with geometric marginals. This new process will enable one to tackle the problem of overdispersion inherent in the analysis of integer-valued time series data, and contains the new geometric process as a particular case. In addition various properties of the new process, such as conditional distribution, autocorrelation structure and innovation structure, are derived. We discuss conditional maximum likelihood estimation of the model parameters. We evaluate the performance of the conditional maximum likelihood estimators by a Monte Carlo study. The proposed process is fitted to time series of number of weekly sales (economics) and weekly number of syphilis cases (medicine) illustrating its capabilities in challenging cases of highly overdispersed count data. |
id |
UFRN_2822f17cfd3fde73d509dd2a8098e99b |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/49682 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Borges, PatrickBourguignon, MarceloMolinares, Fabio Fajardo2022-11-08T19:28:40Z2022-11-08T19:28:40Z2017BORGES, Patrick; BOURGUIGNON, Marcelo; MOLINARES, Fabio F. A generalised NGINAR(1) process with inflated-parameter geometric counting series. Australian and New Zeland Jounal of Statistics, v. 59, p. 137-150, 2017. Disponível em: http://onlinelibrary.wiley.com/doi/10.1111/anzs.12184/abstract. Acesso em: 07 dez. 2017https://repositorio.ufrn.br/handle/123456789/4968210.1111/anzs.12184Australian and New Zeland Jounal of StatisticsNegative binomial thinningEstimationGeometric marginalEverdispersionA generalised NGINAR(1) process with inflated-parameter geometric counting seriesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper we propose a new stationary first-order non-negative integer valued autoregressive process with geometric marginals based on a generalised version of the negative binomial thinning operator. In this manner we obtain another process that we refer to as a generalised stationary integer-valued autoregressive process of the first order with geometric marginals. This new process will enable one to tackle the problem of overdispersion inherent in the analysis of integer-valued time series data, and contains the new geometric process as a particular case. In addition various properties of the new process, such as conditional distribution, autocorrelation structure and innovation structure, are derived. We discuss conditional maximum likelihood estimation of the model parameters. We evaluate the performance of the conditional maximum likelihood estimators by a Monte Carlo study. The proposed process is fitted to time series of number of weekly sales (economics) and weekly number of syphilis cases (medicine) illustrating its capabilities in challenging cases of highly overdispersed count data.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/49682/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/496822022-11-08 16:31:51.744oai:https://repositorio.ufrn.br:123456789/49682Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-11-08T19:31:51Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
A generalised NGINAR(1) process with inflated-parameter geometric counting series |
title |
A generalised NGINAR(1) process with inflated-parameter geometric counting series |
spellingShingle |
A generalised NGINAR(1) process with inflated-parameter geometric counting series Borges, Patrick Negative binomial thinning Estimation Geometric marginal Everdispersion |
title_short |
A generalised NGINAR(1) process with inflated-parameter geometric counting series |
title_full |
A generalised NGINAR(1) process with inflated-parameter geometric counting series |
title_fullStr |
A generalised NGINAR(1) process with inflated-parameter geometric counting series |
title_full_unstemmed |
A generalised NGINAR(1) process with inflated-parameter geometric counting series |
title_sort |
A generalised NGINAR(1) process with inflated-parameter geometric counting series |
author |
Borges, Patrick |
author_facet |
Borges, Patrick Bourguignon, Marcelo Molinares, Fabio Fajardo |
author_role |
author |
author2 |
Bourguignon, Marcelo Molinares, Fabio Fajardo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Borges, Patrick Bourguignon, Marcelo Molinares, Fabio Fajardo |
dc.subject.por.fl_str_mv |
Negative binomial thinning Estimation Geometric marginal Everdispersion |
topic |
Negative binomial thinning Estimation Geometric marginal Everdispersion |
description |
In this paper we propose a new stationary first-order non-negative integer valued autoregressive process with geometric marginals based on a generalised version of the negative binomial thinning operator. In this manner we obtain another process that we refer to as a generalised stationary integer-valued autoregressive process of the first order with geometric marginals. This new process will enable one to tackle the problem of overdispersion inherent in the analysis of integer-valued time series data, and contains the new geometric process as a particular case. In addition various properties of the new process, such as conditional distribution, autocorrelation structure and innovation structure, are derived. We discuss conditional maximum likelihood estimation of the model parameters. We evaluate the performance of the conditional maximum likelihood estimators by a Monte Carlo study. The proposed process is fitted to time series of number of weekly sales (economics) and weekly number of syphilis cases (medicine) illustrating its capabilities in challenging cases of highly overdispersed count data. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017 |
dc.date.accessioned.fl_str_mv |
2022-11-08T19:28:40Z |
dc.date.available.fl_str_mv |
2022-11-08T19:28:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BORGES, Patrick; BOURGUIGNON, Marcelo; MOLINARES, Fabio F. A generalised NGINAR(1) process with inflated-parameter geometric counting series. Australian and New Zeland Jounal of Statistics, v. 59, p. 137-150, 2017. Disponível em: http://onlinelibrary.wiley.com/doi/10.1111/anzs.12184/abstract. Acesso em: 07 dez. 2017 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/49682 |
dc.identifier.doi.none.fl_str_mv |
10.1111/anzs.12184 |
identifier_str_mv |
BORGES, Patrick; BOURGUIGNON, Marcelo; MOLINARES, Fabio F. A generalised NGINAR(1) process with inflated-parameter geometric counting series. Australian and New Zeland Jounal of Statistics, v. 59, p. 137-150, 2017. Disponível em: http://onlinelibrary.wiley.com/doi/10.1111/anzs.12184/abstract. Acesso em: 07 dez. 2017 10.1111/anzs.12184 |
url |
https://repositorio.ufrn.br/handle/123456789/49682 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Australian and New Zeland Jounal of Statistics |
publisher.none.fl_str_mv |
Australian and New Zeland Jounal of Statistics |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/49682/2/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832996116594688 |