A geometric time series model with inflated-parameter Bernoulli counting series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/50998 |
Resumo: | In this paper, we propose a new stationary first-order non-negative integer valued autoregressive [INAR(1)] process with geometric marginals based on a modified version of the binomial thinning operator. This new process will enable one to tackle the problem of overdispersion inherent in the analysis of integer-valued time series data that may arise due to the presence of some correlation between underlying events, heterogeneity of the population, excess to zeros, among others. In addition, it includes as special cases the geometric INAR(1) [GINAR(1)] (Alzaid and Al-Osh, 1988) and new geometric [NGINAR(1)] (Ristić et al., 2009) processes, making it be very useful in discriminating between nested models. The innovation structure of the new process is very simple. The main properties of the process are derived, such as conditional distribution, autocorrelation structure, innovation structure and jumps. The method of conditional maximum likelihood is used for estimating the process parameters. Some numerical results of the estimators are presented with a brief discussion. In order to illustrate the potential for practice of our process we apply it to a real data set. |
id |
UFRN_d02762a5569560cc7e9d9274648787cf |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/50998 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Borges, PatrickMolinares, Fabio FajardoBourguignon, Marcelo2023-01-20T17:43:58Z2023-01-20T17:43:58Z2016-08BORGES, Patrick; MOLINARES, Fabio F.; BOURGUIGNON, Marcelo. A geometric time series model with inflated-parameter Bernoulli counting series. Statistics & Probability Letters , v. 119, p. 264-272, 2016. Disponível em: http://www.sciencedirect.com/science/article/pii/S0167715215304399?via%3Dihub. Acesso em: 07 dez. 20170167-7152https://repositorio.ufrn.br/handle/123456789/50998Statistics and Probability LettersEstimationInflated-parameter bernoulli distributionρ-binomial thinningρ-GINAR(1) processA geometric time series model with inflated-parameter Bernoulli counting seriesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper, we propose a new stationary first-order non-negative integer valued autoregressive [INAR(1)] process with geometric marginals based on a modified version of the binomial thinning operator. This new process will enable one to tackle the problem of overdispersion inherent in the analysis of integer-valued time series data that may arise due to the presence of some correlation between underlying events, heterogeneity of the population, excess to zeros, among others. In addition, it includes as special cases the geometric INAR(1) [GINAR(1)] (Alzaid and Al-Osh, 1988) and new geometric [NGINAR(1)] (Ristić et al., 2009) processes, making it be very useful in discriminating between nested models. The innovation structure of the new process is very simple. The main properties of the process are derived, such as conditional distribution, autocorrelation structure, innovation structure and jumps. The method of conditional maximum likelihood is used for estimating the process parameters. Some numerical results of the estimators are presented with a brief discussion. In order to illustrate the potential for practice of our process we apply it to a real data set.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/50998/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/509982023-01-20 14:46:23.789oai:https://repositorio.ufrn.br:123456789/50998Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-01-20T17:46:23Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
A geometric time series model with inflated-parameter Bernoulli counting series |
title |
A geometric time series model with inflated-parameter Bernoulli counting series |
spellingShingle |
A geometric time series model with inflated-parameter Bernoulli counting series Borges, Patrick Estimation Inflated-parameter bernoulli distribution ρ-binomial thinning ρ-GINAR(1) process |
title_short |
A geometric time series model with inflated-parameter Bernoulli counting series |
title_full |
A geometric time series model with inflated-parameter Bernoulli counting series |
title_fullStr |
A geometric time series model with inflated-parameter Bernoulli counting series |
title_full_unstemmed |
A geometric time series model with inflated-parameter Bernoulli counting series |
title_sort |
A geometric time series model with inflated-parameter Bernoulli counting series |
author |
Borges, Patrick |
author_facet |
Borges, Patrick Molinares, Fabio Fajardo Bourguignon, Marcelo |
author_role |
author |
author2 |
Molinares, Fabio Fajardo Bourguignon, Marcelo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Borges, Patrick Molinares, Fabio Fajardo Bourguignon, Marcelo |
dc.subject.por.fl_str_mv |
Estimation Inflated-parameter bernoulli distribution ρ-binomial thinning ρ-GINAR(1) process |
topic |
Estimation Inflated-parameter bernoulli distribution ρ-binomial thinning ρ-GINAR(1) process |
description |
In this paper, we propose a new stationary first-order non-negative integer valued autoregressive [INAR(1)] process with geometric marginals based on a modified version of the binomial thinning operator. This new process will enable one to tackle the problem of overdispersion inherent in the analysis of integer-valued time series data that may arise due to the presence of some correlation between underlying events, heterogeneity of the population, excess to zeros, among others. In addition, it includes as special cases the geometric INAR(1) [GINAR(1)] (Alzaid and Al-Osh, 1988) and new geometric [NGINAR(1)] (Ristić et al., 2009) processes, making it be very useful in discriminating between nested models. The innovation structure of the new process is very simple. The main properties of the process are derived, such as conditional distribution, autocorrelation structure, innovation structure and jumps. The method of conditional maximum likelihood is used for estimating the process parameters. Some numerical results of the estimators are presented with a brief discussion. In order to illustrate the potential for practice of our process we apply it to a real data set. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-08 |
dc.date.accessioned.fl_str_mv |
2023-01-20T17:43:58Z |
dc.date.available.fl_str_mv |
2023-01-20T17:43:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BORGES, Patrick; MOLINARES, Fabio F.; BOURGUIGNON, Marcelo. A geometric time series model with inflated-parameter Bernoulli counting series. Statistics & Probability Letters , v. 119, p. 264-272, 2016. Disponível em: http://www.sciencedirect.com/science/article/pii/S0167715215304399?via%3Dihub. Acesso em: 07 dez. 2017 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/50998 |
dc.identifier.issn.none.fl_str_mv |
0167-7152 |
identifier_str_mv |
BORGES, Patrick; MOLINARES, Fabio F.; BOURGUIGNON, Marcelo. A geometric time series model with inflated-parameter Bernoulli counting series. Statistics & Probability Letters , v. 119, p. 264-272, 2016. Disponível em: http://www.sciencedirect.com/science/article/pii/S0167715215304399?via%3Dihub. Acesso em: 07 dez. 2017 0167-7152 |
url |
https://repositorio.ufrn.br/handle/123456789/50998 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Statistics and Probability Letters |
publisher.none.fl_str_mv |
Statistics and Probability Letters |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/50998/2/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832967422312448 |