Hilbert-style formalism for two-dimensional notions of consequence

Detalhes bibliográficos
Autor(a) principal: Greati, Vitor Rodrigues
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/46792
Resumo: O presente trabalho propõe um formalismo dedutivo bidimensional à Hilbert (H-formalismo) para relações de B-consequência, uma classe de lógicas bidimensionais que generalizam as noções usuais (tarskianas, unidimensionais) de lógica. Nós sustentamos que o ambiente bidimensional é apropriado para o estudo do bilateralismo em lógica, por permitir que julgamentos primitivos de asserção e rechaço (ou, como preferimos, as atitudes cognitivas de aceitação e rejeição) ajam em dimensões independentes e capazes de interagir entre si ao determinar as inferências válidas de uma lógica. Nessa perspectiva, o formalismo proposto constitui um aparato inferencial para raciocinar sobre julgamentos bilateralistas. Após uma descrição detalhada do funcionamento do formalismo proposto, o qual é inspirado nos sistemas de Hilbert simétricos, nós provemos um algoritmo de busca de demonstrações que executa em tempo exponencial, em geral, e em tempo polinomial quando apenas regras contendo no máximo uma fórmula no sucedente estão presentes no sistema em questão. Então, nós passamos a investigar semânticas não-determinísticas bidimensionais por meio de estruturas de matrizes contendo dois conjuntos de valores distinguidos, um qualificando alguns valores de verdade como aceitos, e o outro, alguns valores como rejeitados, constituindo um caminho semântico para o bilateralismo no ambiente bidimensional. Nós apresentamos também um algoritmo para a produção de sistemas de Hilbert bidimensionais para matrizes não-determinísticas bidimensionais suficientemente expressivas, bem como alguns procedimentos de simplificação que permitem reduzir consideravelmente o tamanho e a complexidade do sistema resultante. Para matrizes finitas, vale apontar, o procedimento resulta em sistemas finitos. Ao final, como estudo de caso, investigamos a lógica da inconsistência formal chamada mCi quanto à sua axiomatizabilidade por sistemas ao estilo de Hilbert. Demonstramos que não há sistemas de Hilbert finitos unidimensionais que capturem essa lógica, mas que ela habita uma relação de consequência bidimensional finitamente axiomatizável por um sistema de Hilbert bidimensional. A existência desse sistema segue diretamente do algoritmo de axiomatização proposto, em vista da semântica bidimensional 5-valorada não-determinística suficientemente expressiva que determina a relação de consequência bidimensional mencionada.
id UFRN_374aa0b59bdba55761051acf3a9c8e72
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/46792
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Greati, Vitor Rodrigueshttp://lattes.cnpq.br/0343448850800210http://lattes.cnpq.br/3059324458238110Marcelino, Sérgio Roseiro Teles00000000000Rivieccio, Umbertohttp://lattes.cnpq.br/0597230560325577Almeida, João Marcos de2022-04-05T00:22:36Z2022-04-05T00:22:36Z2022-02-21GREATI, Vitor Rodrigues. Hilbert-style formalism for two-dimensional notions of consequence. 2022. 142f. Dissertação (Mestrado em Sistemas e Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.https://repositorio.ufrn.br/handle/123456789/46792O presente trabalho propõe um formalismo dedutivo bidimensional à Hilbert (H-formalismo) para relações de B-consequência, uma classe de lógicas bidimensionais que generalizam as noções usuais (tarskianas, unidimensionais) de lógica. Nós sustentamos que o ambiente bidimensional é apropriado para o estudo do bilateralismo em lógica, por permitir que julgamentos primitivos de asserção e rechaço (ou, como preferimos, as atitudes cognitivas de aceitação e rejeição) ajam em dimensões independentes e capazes de interagir entre si ao determinar as inferências válidas de uma lógica. Nessa perspectiva, o formalismo proposto constitui um aparato inferencial para raciocinar sobre julgamentos bilateralistas. Após uma descrição detalhada do funcionamento do formalismo proposto, o qual é inspirado nos sistemas de Hilbert simétricos, nós provemos um algoritmo de busca de demonstrações que executa em tempo exponencial, em geral, e em tempo polinomial quando apenas regras contendo no máximo uma fórmula no sucedente estão presentes no sistema em questão. Então, nós passamos a investigar semânticas não-determinísticas bidimensionais por meio de estruturas de matrizes contendo dois conjuntos de valores distinguidos, um qualificando alguns valores de verdade como aceitos, e o outro, alguns valores como rejeitados, constituindo um caminho semântico para o bilateralismo no ambiente bidimensional. Nós apresentamos também um algoritmo para a produção de sistemas de Hilbert bidimensionais para matrizes não-determinísticas bidimensionais suficientemente expressivas, bem como alguns procedimentos de simplificação que permitem reduzir consideravelmente o tamanho e a complexidade do sistema resultante. Para matrizes finitas, vale apontar, o procedimento resulta em sistemas finitos. Ao final, como estudo de caso, investigamos a lógica da inconsistência formal chamada mCi quanto à sua axiomatizabilidade por sistemas ao estilo de Hilbert. Demonstramos que não há sistemas de Hilbert finitos unidimensionais que capturem essa lógica, mas que ela habita uma relação de consequência bidimensional finitamente axiomatizável por um sistema de Hilbert bidimensional. A existência desse sistema segue diretamente do algoritmo de axiomatização proposto, em vista da semântica bidimensional 5-valorada não-determinística suficientemente expressiva que determina a relação de consequência bidimensional mencionada.The present work proposes a two-dimensional Hilbert-style deductive formalism (H-formalism) for B-consequence relations, a class of two-dimensional logics that generalize the usual (Tarskian, one-dimensional) notions of logic. We argue that the two-dimensional environment is appropriate to the study of bilateralism in logic, by allowing the primitive judgments of assertion and denial (or, as we prefer, the cognitive attitudes of acceptance and rejection) to act on independent but interacting dimensions in determining what-follows-from-what. In this perspective, our proposed formalism constitutes an inferential apparatus for reasoning over bilateralist judgments. After a thorough description of the inner workings of the proposed proof formalism, which is inspired by the one-dimensional symmetrical Hilbert-style systems, we provide a proof-search algorithm for finite analytic systems that runs in at most exponential time, in general, and in polynomial time when only rules having at most one formula in the succedent are present in the concerned system. We delve then into the area of two-dimensional non-deterministic semantics via matrix structures containing two sets of distinguished truthvalues, one qualifying some truth-values as accepted and the other as rejected, constituting a semantical path for bilateralism in the two-dimensional environment. We present an algorithm for producing analytic two-dimensional Hilbert-style systems for sufficiently expressive two-dimensional matrices, as well as some streamlining procedures that allow to considerably reduce the size and complexity of the resulting calculi. For finite matrices, we should point out that the procedure results in finite systems. In the end, as a case study, we investigate the logic of formal inconsistency called mCi with respect to its axiomatizability in terms of Hilbert-style systems. We prove that there is no finite one-dimensional Hilbert-style axiomatization for this logic, but that it inhabits a two-dimensional consequence relation that is finitely axiomatizable by a finite two-dimensional Hilbert-style system. The existence of such system follows directly from the proposed axiomatization procedure, in view of the sufficiently expressive 5-valued non-deterministic bidimensional semantics available for the mentioned two-dimensional consequence relation.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESUniversidade Federal do Rio Grande do NortePROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃOUFRNBrasilTwo-dimensional consequence relationsHilbert-style proof systemsNon-deterministic semanticsmCiHilbert-style formalism for two-dimensional notions of consequenceHilbert-style formalism for two-dimensional notions of consequenceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALHilbertstyleformalism_Greati_2022.pdfapplication/pdf1314903https://repositorio.ufrn.br/bitstream/123456789/46792/1/Hilbertstyleformalism_Greati_2022.pdf2c838583d2c5503990553b33a4e4c311MD51123456789/467922022-05-02 13:02:13.158oai:https://repositorio.ufrn.br:123456789/46792Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-05-02T16:02:13Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Hilbert-style formalism for two-dimensional notions of consequence
dc.title.alternative.pt_BR.fl_str_mv Hilbert-style formalism for two-dimensional notions of consequence
title Hilbert-style formalism for two-dimensional notions of consequence
spellingShingle Hilbert-style formalism for two-dimensional notions of consequence
Greati, Vitor Rodrigues
Two-dimensional consequence relations
Hilbert-style proof systems
Non-deterministic semantics
mCi
title_short Hilbert-style formalism for two-dimensional notions of consequence
title_full Hilbert-style formalism for two-dimensional notions of consequence
title_fullStr Hilbert-style formalism for two-dimensional notions of consequence
title_full_unstemmed Hilbert-style formalism for two-dimensional notions of consequence
title_sort Hilbert-style formalism for two-dimensional notions of consequence
author Greati, Vitor Rodrigues
author_facet Greati, Vitor Rodrigues
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0343448850800210
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3059324458238110
dc.contributor.referees1.none.fl_str_mv Rivieccio, Umberto
dc.contributor.referees1Lattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0597230560325577
dc.contributor.author.fl_str_mv Greati, Vitor Rodrigues
dc.contributor.advisor-co1.fl_str_mv Marcelino, Sérgio Roseiro Teles
dc.contributor.advisor-co1ID.fl_str_mv 00000000000
dc.contributor.advisor1.fl_str_mv Almeida, João Marcos de
contributor_str_mv Marcelino, Sérgio Roseiro Teles
Almeida, João Marcos de
dc.subject.por.fl_str_mv Two-dimensional consequence relations
Hilbert-style proof systems
Non-deterministic semantics
mCi
topic Two-dimensional consequence relations
Hilbert-style proof systems
Non-deterministic semantics
mCi
description O presente trabalho propõe um formalismo dedutivo bidimensional à Hilbert (H-formalismo) para relações de B-consequência, uma classe de lógicas bidimensionais que generalizam as noções usuais (tarskianas, unidimensionais) de lógica. Nós sustentamos que o ambiente bidimensional é apropriado para o estudo do bilateralismo em lógica, por permitir que julgamentos primitivos de asserção e rechaço (ou, como preferimos, as atitudes cognitivas de aceitação e rejeição) ajam em dimensões independentes e capazes de interagir entre si ao determinar as inferências válidas de uma lógica. Nessa perspectiva, o formalismo proposto constitui um aparato inferencial para raciocinar sobre julgamentos bilateralistas. Após uma descrição detalhada do funcionamento do formalismo proposto, o qual é inspirado nos sistemas de Hilbert simétricos, nós provemos um algoritmo de busca de demonstrações que executa em tempo exponencial, em geral, e em tempo polinomial quando apenas regras contendo no máximo uma fórmula no sucedente estão presentes no sistema em questão. Então, nós passamos a investigar semânticas não-determinísticas bidimensionais por meio de estruturas de matrizes contendo dois conjuntos de valores distinguidos, um qualificando alguns valores de verdade como aceitos, e o outro, alguns valores como rejeitados, constituindo um caminho semântico para o bilateralismo no ambiente bidimensional. Nós apresentamos também um algoritmo para a produção de sistemas de Hilbert bidimensionais para matrizes não-determinísticas bidimensionais suficientemente expressivas, bem como alguns procedimentos de simplificação que permitem reduzir consideravelmente o tamanho e a complexidade do sistema resultante. Para matrizes finitas, vale apontar, o procedimento resulta em sistemas finitos. Ao final, como estudo de caso, investigamos a lógica da inconsistência formal chamada mCi quanto à sua axiomatizabilidade por sistemas ao estilo de Hilbert. Demonstramos que não há sistemas de Hilbert finitos unidimensionais que capturem essa lógica, mas que ela habita uma relação de consequência bidimensional finitamente axiomatizável por um sistema de Hilbert bidimensional. A existência desse sistema segue diretamente do algoritmo de axiomatização proposto, em vista da semântica bidimensional 5-valorada não-determinística suficientemente expressiva que determina a relação de consequência bidimensional mencionada.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-04-05T00:22:36Z
dc.date.available.fl_str_mv 2022-04-05T00:22:36Z
dc.date.issued.fl_str_mv 2022-02-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GREATI, Vitor Rodrigues. Hilbert-style formalism for two-dimensional notions of consequence. 2022. 142f. Dissertação (Mestrado em Sistemas e Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/46792
identifier_str_mv GREATI, Vitor Rodrigues. Hilbert-style formalism for two-dimensional notions of consequence. 2022. 142f. Dissertação (Mestrado em Sistemas e Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.
url https://repositorio.ufrn.br/handle/123456789/46792
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/46792/1/Hilbertstyleformalism_Greati_2022.pdf
bitstream.checksum.fl_str_mv 2c838583d2c5503990553b33a4e4c311
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832650491265024