Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/24703 https://doi.org/10.1007/s00429-017-1573-1 |
Resumo: | Interestingly, rodents breathe at the delta-frequency range (~ 0.5–4 Hz) during anesthesia (Clement et al. 2008), therefore, at overlapping frequencies with the oscillations described by Roy et al. (2017). Rhythmic airflow is known to activate receptors in the nasal cavity and drive a prominent respiration-coupled LFP rhythm (RR) in olfactory brain areas such as the olfactory bulb and piriform cortex (Adrian 1942; Fontanini et al. 2003). The piriform cortex projects directly to the PFC (Clugnet and Price 1987) and indirectly to the hippocampus, after a relay in the entorhinal cortex (Wilson and Steward 1978). We have recently characterized three different types of low-frequency oscillations < 6 Hz in LFPs from the olfactory bulb, hippocampus, and PFC of urethane-anesthetized rats (Lockmann et al. 2016), the same experimental preparation as in Roy et al. (2017). By simultaneously assessing air pressure in the nasal cavity of these animals, we could demonstrate that one of the three oscillations actually corresponded to RR: it had the same frequency as and phase-locked to the breathing cycles (the other two oscillations corresponded to up-and-down state transitions and theta oscillations; Lockmann et al. 2016). We further showed that respiration-entrained LFP oscillations were abolished by tracheostomy and restored by rhythmic air puffing into the nasal cavity; moreover, in the hippocampus, RR had the maximum amplitude in the dentate gyrus hilus, the anatomical site where olfactory inputs impinge (Lockmann et al. 2016). |
id |
UFRN_52444cf68dc5d781ac12a79d70f0355b |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/24703 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Lockmann, Andre L. V. Tort, Adriano Bretanha Lopes2018-02-05T14:15:31Z2018-02-05T14:15:31Z2018-01LOCKMANN, A. L. V.; TORT, A. B. L. Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct, v. 223, p. 1-3. jan. 2018.https://repositorio.ufrn.br/jspui/handle/123456789/24703https://doi.org/10.1007/s00429-017-1573-1engNasal respiration - rodentsDelta-frequency oscillations - rodentsHippocampusNasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodentsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInterestingly, rodents breathe at the delta-frequency range (~ 0.5–4 Hz) during anesthesia (Clement et al. 2008), therefore, at overlapping frequencies with the oscillations described by Roy et al. (2017). Rhythmic airflow is known to activate receptors in the nasal cavity and drive a prominent respiration-coupled LFP rhythm (RR) in olfactory brain areas such as the olfactory bulb and piriform cortex (Adrian 1942; Fontanini et al. 2003). The piriform cortex projects directly to the PFC (Clugnet and Price 1987) and indirectly to the hippocampus, after a relay in the entorhinal cortex (Wilson and Steward 1978). We have recently characterized three different types of low-frequency oscillations < 6 Hz in LFPs from the olfactory bulb, hippocampus, and PFC of urethane-anesthetized rats (Lockmann et al. 2016), the same experimental preparation as in Roy et al. (2017). By simultaneously assessing air pressure in the nasal cavity of these animals, we could demonstrate that one of the three oscillations actually corresponded to RR: it had the same frequency as and phase-locked to the breathing cycles (the other two oscillations corresponded to up-and-down state transitions and theta oscillations; Lockmann et al. 2016). We further showed that respiration-entrained LFP oscillations were abolished by tracheostomy and restored by rhythmic air puffing into the nasal cavity; moreover, in the hippocampus, RR had the maximum amplitude in the dentate gyrus hilus, the anatomical site where olfactory inputs impinge (Lockmann et al. 2016).info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTAdrianoTort_ICe_2018_Nasal respiration.pdf.txtAdrianoTort_ICe_2018_Nasal respiration.pdf.txtExtracted texttext/plain13257https://repositorio.ufrn.br/bitstream/123456789/24703/3/AdrianoTort_ICe_2018_Nasal%20respiration.pdf.txt9447d4dbc8ca437a96b7e5987b009226MD53THUMBNAILAdrianoTort_ICe_2018_Nasal respiration.pdf.jpgAdrianoTort_ICe_2018_Nasal respiration.pdf.jpgIM Thumbnailimage/jpeg9219https://repositorio.ufrn.br/bitstream/123456789/24703/4/AdrianoTort_ICe_2018_Nasal%20respiration.pdf.jpg2622e6ca6c5e158f29089fc711a694e6MD54ORIGINALAdrianoTort_ICe_2018_Nasal respiration.pdfAdrianoTort_ICe_2018_Nasal respiration.pdfAdrianoTort_ICe_2018_Nasal respirationapplication/pdf1355903https://repositorio.ufrn.br/bitstream/123456789/24703/1/AdrianoTort_ICe_2018_Nasal%20respiration.pdf081b99f7d0cf49f458003b6913f77e07MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/24703/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/247032021-07-08 10:55:50.372oai:https://repositorio.ufrn.br:123456789/24703Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-08T13:55:50Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents |
title |
Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents |
spellingShingle |
Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents Lockmann, Andre L. V. Nasal respiration - rodents Delta-frequency oscillations - rodents Hippocampus |
title_short |
Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents |
title_full |
Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents |
title_fullStr |
Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents |
title_full_unstemmed |
Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents |
title_sort |
Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents |
author |
Lockmann, Andre L. V. |
author_facet |
Lockmann, Andre L. V. Tort, Adriano Bretanha Lopes |
author_role |
author |
author2 |
Tort, Adriano Bretanha Lopes |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Lockmann, Andre L. V. Tort, Adriano Bretanha Lopes |
dc.subject.por.fl_str_mv |
Nasal respiration - rodents Delta-frequency oscillations - rodents Hippocampus |
topic |
Nasal respiration - rodents Delta-frequency oscillations - rodents Hippocampus |
description |
Interestingly, rodents breathe at the delta-frequency range (~ 0.5–4 Hz) during anesthesia (Clement et al. 2008), therefore, at overlapping frequencies with the oscillations described by Roy et al. (2017). Rhythmic airflow is known to activate receptors in the nasal cavity and drive a prominent respiration-coupled LFP rhythm (RR) in olfactory brain areas such as the olfactory bulb and piriform cortex (Adrian 1942; Fontanini et al. 2003). The piriform cortex projects directly to the PFC (Clugnet and Price 1987) and indirectly to the hippocampus, after a relay in the entorhinal cortex (Wilson and Steward 1978). We have recently characterized three different types of low-frequency oscillations < 6 Hz in LFPs from the olfactory bulb, hippocampus, and PFC of urethane-anesthetized rats (Lockmann et al. 2016), the same experimental preparation as in Roy et al. (2017). By simultaneously assessing air pressure in the nasal cavity of these animals, we could demonstrate that one of the three oscillations actually corresponded to RR: it had the same frequency as and phase-locked to the breathing cycles (the other two oscillations corresponded to up-and-down state transitions and theta oscillations; Lockmann et al. 2016). We further showed that respiration-entrained LFP oscillations were abolished by tracheostomy and restored by rhythmic air puffing into the nasal cavity; moreover, in the hippocampus, RR had the maximum amplitude in the dentate gyrus hilus, the anatomical site where olfactory inputs impinge (Lockmann et al. 2016). |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-02-05T14:15:31Z |
dc.date.available.fl_str_mv |
2018-02-05T14:15:31Z |
dc.date.issued.fl_str_mv |
2018-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LOCKMANN, A. L. V.; TORT, A. B. L. Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct, v. 223, p. 1-3. jan. 2018. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/24703 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s00429-017-1573-1 |
identifier_str_mv |
LOCKMANN, A. L. V.; TORT, A. B. L. Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct, v. 223, p. 1-3. jan. 2018. |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/24703 https://doi.org/10.1007/s00429-017-1573-1 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/24703/3/AdrianoTort_ICe_2018_Nasal%20respiration.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/24703/4/AdrianoTort_ICe_2018_Nasal%20respiration.pdf.jpg https://repositorio.ufrn.br/bitstream/123456789/24703/1/AdrianoTort_ICe_2018_Nasal%20respiration.pdf https://repositorio.ufrn.br/bitstream/123456789/24703/2/license.txt |
bitstream.checksum.fl_str_mv |
9447d4dbc8ca437a96b7e5987b009226 2622e6ca6c5e158f29089fc711a694e6 081b99f7d0cf49f458003b6913f77e07 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833071717875712 |