Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents

Detalhes bibliográficos
Autor(a) principal: Lockmann, Andre L. V. 
Data de Publicação: 2018
Outros Autores: Tort, Adriano Bretanha Lopes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/24703
https://doi.org/10.1007/s00429-017-1573-1
Resumo: Interestingly, rodents breathe at the delta-frequency range (~ 0.5–4 Hz) during anesthesia (Clement et al. 2008), therefore, at overlapping frequencies with the oscillations described by Roy et al. (2017). Rhythmic airflow is known to activate receptors in the nasal cavity and drive a prominent respiration-coupled LFP rhythm (RR) in olfactory brain areas such as the olfactory bulb and piriform cortex (Adrian 1942; Fontanini et al. 2003). The piriform cortex projects directly to the PFC (Clugnet and Price 1987) and indirectly to the hippocampus, after a relay in the entorhinal cortex (Wilson and Steward 1978). We have recently characterized three different types of low-frequency oscillations < 6 Hz in LFPs from the olfactory bulb, hippocampus, and PFC of urethane-anesthetized rats (Lockmann et al. 2016), the same experimental preparation as in Roy et al. (2017). By simultaneously assessing air pressure in the nasal cavity of these animals, we could demonstrate that one of the three oscillations actually corresponded to RR: it had the same frequency as and phase-locked to the breathing cycles (the other two oscillations corresponded to up-and-down state transitions and theta oscillations; Lockmann et al. 2016). We further showed that respiration-entrained LFP oscillations were abolished by tracheostomy and restored by rhythmic air puffing into the nasal cavity; moreover, in the hippocampus, RR had the maximum amplitude in the dentate gyrus hilus, the anatomical site where olfactory inputs impinge (Lockmann et al. 2016).
id UFRN_52444cf68dc5d781ac12a79d70f0355b
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/24703
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Lockmann, Andre L. V. Tort, Adriano Bretanha Lopes2018-02-05T14:15:31Z2018-02-05T14:15:31Z2018-01LOCKMANN, A. L. V.; TORT, A. B. L. Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct, v. 223, p. 1-3. jan. 2018.https://repositorio.ufrn.br/jspui/handle/123456789/24703https://doi.org/10.1007/s00429-017-1573-1engNasal respiration - rodentsDelta-frequency oscillations - rodentsHippocampusNasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodentsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInterestingly, rodents breathe at the delta-frequency range (~ 0.5–4 Hz) during anesthesia (Clement et al. 2008), therefore, at overlapping frequencies with the oscillations described by Roy et al. (2017). Rhythmic airflow is known to activate receptors in the nasal cavity and drive a prominent respiration-coupled LFP rhythm (RR) in olfactory brain areas such as the olfactory bulb and piriform cortex (Adrian 1942; Fontanini et al. 2003). The piriform cortex projects directly to the PFC (Clugnet and Price 1987) and indirectly to the hippocampus, after a relay in the entorhinal cortex (Wilson and Steward 1978). We have recently characterized three different types of low-frequency oscillations < 6 Hz in LFPs from the olfactory bulb, hippocampus, and PFC of urethane-anesthetized rats (Lockmann et al. 2016), the same experimental preparation as in Roy et al. (2017). By simultaneously assessing air pressure in the nasal cavity of these animals, we could demonstrate that one of the three oscillations actually corresponded to RR: it had the same frequency as and phase-locked to the breathing cycles (the other two oscillations corresponded to up-and-down state transitions and theta oscillations; Lockmann et al. 2016). We further showed that respiration-entrained LFP oscillations were abolished by tracheostomy and restored by rhythmic air puffing into the nasal cavity; moreover, in the hippocampus, RR had the maximum amplitude in the dentate gyrus hilus, the anatomical site where olfactory inputs impinge (Lockmann et al. 2016).info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTAdrianoTort_ICe_2018_Nasal respiration.pdf.txtAdrianoTort_ICe_2018_Nasal respiration.pdf.txtExtracted texttext/plain13257https://repositorio.ufrn.br/bitstream/123456789/24703/3/AdrianoTort_ICe_2018_Nasal%20respiration.pdf.txt9447d4dbc8ca437a96b7e5987b009226MD53THUMBNAILAdrianoTort_ICe_2018_Nasal respiration.pdf.jpgAdrianoTort_ICe_2018_Nasal respiration.pdf.jpgIM Thumbnailimage/jpeg9219https://repositorio.ufrn.br/bitstream/123456789/24703/4/AdrianoTort_ICe_2018_Nasal%20respiration.pdf.jpg2622e6ca6c5e158f29089fc711a694e6MD54ORIGINALAdrianoTort_ICe_2018_Nasal respiration.pdfAdrianoTort_ICe_2018_Nasal respiration.pdfAdrianoTort_ICe_2018_Nasal respirationapplication/pdf1355903https://repositorio.ufrn.br/bitstream/123456789/24703/1/AdrianoTort_ICe_2018_Nasal%20respiration.pdf081b99f7d0cf49f458003b6913f77e07MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/24703/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/247032021-07-08 10:55:50.372oai:https://repositorio.ufrn.br:123456789/24703Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-08T13:55:50Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents
title Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents
spellingShingle Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents
Lockmann, Andre L. V. 
Nasal respiration - rodents
Delta-frequency oscillations - rodents
Hippocampus
title_short Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents
title_full Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents
title_fullStr Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents
title_full_unstemmed Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents
title_sort Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents
author Lockmann, Andre L. V. 
author_facet Lockmann, Andre L. V. 
Tort, Adriano Bretanha Lopes
author_role author
author2 Tort, Adriano Bretanha Lopes
author2_role author
dc.contributor.author.fl_str_mv Lockmann, Andre L. V. 
Tort, Adriano Bretanha Lopes
dc.subject.por.fl_str_mv Nasal respiration - rodents
Delta-frequency oscillations - rodents
Hippocampus
topic Nasal respiration - rodents
Delta-frequency oscillations - rodents
Hippocampus
description Interestingly, rodents breathe at the delta-frequency range (~ 0.5–4 Hz) during anesthesia (Clement et al. 2008), therefore, at overlapping frequencies with the oscillations described by Roy et al. (2017). Rhythmic airflow is known to activate receptors in the nasal cavity and drive a prominent respiration-coupled LFP rhythm (RR) in olfactory brain areas such as the olfactory bulb and piriform cortex (Adrian 1942; Fontanini et al. 2003). The piriform cortex projects directly to the PFC (Clugnet and Price 1987) and indirectly to the hippocampus, after a relay in the entorhinal cortex (Wilson and Steward 1978). We have recently characterized three different types of low-frequency oscillations < 6 Hz in LFPs from the olfactory bulb, hippocampus, and PFC of urethane-anesthetized rats (Lockmann et al. 2016), the same experimental preparation as in Roy et al. (2017). By simultaneously assessing air pressure in the nasal cavity of these animals, we could demonstrate that one of the three oscillations actually corresponded to RR: it had the same frequency as and phase-locked to the breathing cycles (the other two oscillations corresponded to up-and-down state transitions and theta oscillations; Lockmann et al. 2016). We further showed that respiration-entrained LFP oscillations were abolished by tracheostomy and restored by rhythmic air puffing into the nasal cavity; moreover, in the hippocampus, RR had the maximum amplitude in the dentate gyrus hilus, the anatomical site where olfactory inputs impinge (Lockmann et al. 2016).
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-02-05T14:15:31Z
dc.date.available.fl_str_mv 2018-02-05T14:15:31Z
dc.date.issued.fl_str_mv 2018-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv LOCKMANN, A. L. V.; TORT, A. B. L. Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct, v. 223, p. 1-3. jan. 2018.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/24703
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s00429-017-1573-1
identifier_str_mv LOCKMANN, A. L. V.; TORT, A. B. L. Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct, v. 223, p. 1-3. jan. 2018.
url https://repositorio.ufrn.br/jspui/handle/123456789/24703
https://doi.org/10.1007/s00429-017-1573-1
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/24703/3/AdrianoTort_ICe_2018_Nasal%20respiration.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/24703/4/AdrianoTort_ICe_2018_Nasal%20respiration.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/24703/1/AdrianoTort_ICe_2018_Nasal%20respiration.pdf
https://repositorio.ufrn.br/bitstream/123456789/24703/2/license.txt
bitstream.checksum.fl_str_mv 9447d4dbc8ca437a96b7e5987b009226
2622e6ca6c5e158f29089fc711a694e6
081b99f7d0cf49f458003b6913f77e07
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814833071717875712