Abordagem computacional para detecção de aneuploidias fetais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/43155 |
Resumo: | The discovery of the cell free fetal DNA (cffDNA) in maternal plasma and serum allowed the development of new test for fetal disorders in a non-invasive way (NIPT). The detection of the cffDNA is possible around the seventh week, and its concentration increases along the gestational period. Those characteristics allow the early identification of many fetal issues and the palliative actions. Regarding the Next-Generation Sequencing (NGS) tech, several methods has been described on literature asserting a consistent sensibility to detection of aneuploidy cases as Down, Edward and Patau syndromes. We propose a method in sílico, CAADy (Computational Approach for Detection of Fetal Aneuploidies), a strategy to detection of fetal aneuploidies. That method removes outliers which can come from diferent technologies of sequencing and it will allow the identification of genetic diseases of chromosomal origin. In this study was used the method of z-score with internal reference calculated by median absolute deviation (MAD) for identify the cases of trisomy of chromosomes 13, 18 and 21 (2, 12 and 16 cases, respectively) included in the 903 samples of cffDNA availables in the SRA portal (http://www.ncbi.nlm.nih.gov/sra/SRA047257). We detected all cases of trisomies and with 100% of sensitivity and specificity. The confirmation of results observed in sílico were based on the karyotype. Therefore, our methodology was presented as great for the detection of trisomies. |
id |
UFRN_557a26071225f6c5465c4095c89c16ee |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/43155 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Mendonça, Amanda Kelly do NascimentoCosta , César RennóSouza, Gustavo Antônio de2018-02-15T12:15:48Z2021-10-06T11:14:16Z2018-02-15T12:15:48Z2021-10-06T11:14:16Z2016-12-132012911912MENDONÇA, Amanda Kelly do Nascimento. Abordagem computacional para detecção de aneuploidias fetais. 2016. 32 f. Monografia (Graduação em Biomedicina) - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal-RN, 2016.https://repositorio.ufrn.br/handle/123456789/43155The discovery of the cell free fetal DNA (cffDNA) in maternal plasma and serum allowed the development of new test for fetal disorders in a non-invasive way (NIPT). The detection of the cffDNA is possible around the seventh week, and its concentration increases along the gestational period. Those characteristics allow the early identification of many fetal issues and the palliative actions. Regarding the Next-Generation Sequencing (NGS) tech, several methods has been described on literature asserting a consistent sensibility to detection of aneuploidy cases as Down, Edward and Patau syndromes. We propose a method in sílico, CAADy (Computational Approach for Detection of Fetal Aneuploidies), a strategy to detection of fetal aneuploidies. That method removes outliers which can come from diferent technologies of sequencing and it will allow the identification of genetic diseases of chromosomal origin. In this study was used the method of z-score with internal reference calculated by median absolute deviation (MAD) for identify the cases of trisomy of chromosomes 13, 18 and 21 (2, 12 and 16 cases, respectively) included in the 903 samples of cffDNA availables in the SRA portal (http://www.ncbi.nlm.nih.gov/sra/SRA047257). We detected all cases of trisomies and with 100% of sensitivity and specificity. The confirmation of results observed in sílico were based on the karyotype. Therefore, our methodology was presented as great for the detection of trisomies.A descoberta da presença do DNA fetal (cffDNA) no plasma e soro materno favoreceu novas abordagens ao diagnóstico não invasivo de desordens fetais (NIPT) promovendo uma melhor assistência ao pré-natal. A rápida detecção de cffDNA já é possível em torno da sétima semana gestacional com aumento de sua concentração ao longo do período. Assim, tais características possibilitam o reconhecimento antecipado de afecções fetais e a ação de medidas paliativas. No contexto de uso de Next-Generation Sequencing (NGS), diversos métodos têm sido descritos na literatura afirmando uma consistente sensibilidade para detecção de casos de aneuploidias como as síndromes de Down, Edward, Klinefelter, Patau e Turner. Nós propomos um método in sílico, CAADy (Abordagem Computacional para Detecção de Aneuploidias Fetais), uma estratégia para detecção de aneuploidias fetais. A metodologia é fundamentada na remoção de amostras outliers provenientes de diferentes tecnologias de sequenciamento e permitirá a identificação de enfermidades genéticas de origem cromossômica. Neste estudo foi usado o método de z-score com interferência interna (IR) calculado pelo desvio absoluto mediano (MAD) para identificar os casos de trissomia dos cromossomos 13, 18 e 21 (2, 12 e 16 casos, respectivamente) em 903 amostras de cffDNA disponíveis no portal SRA (http://www.ncbi.nlm.nih.gov/sra/SRA047257). Nós detectamos todos os casos de trissomias com 100% de sensibilidade e especificidade. A confirmação dos resultados foi baseada no cariótipo fetal. Assim, nossa metodologia apresentou grande potencial para detectar trissomias.Universidade Federal do Rio Grande do NorteUFRNBrasilBiomedicinacffDNAcffDNAAneuploidiasAneuploidiesCAADyCAADyCNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA HUMANA E MEDICAAbordagem computacional para detecção de aneuploidias fetaisComputational Approach for detection of fetal aneuploidiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTAbordagemComputacional_Mendonça_2016.pdf.txtExtracted texttext/plain52453https://repositorio.ufrn.br/bitstream/123456789/43155/1/AbordagemComputacional_Mendon%c3%a7a_2016.pdf.txt3edd6a0084d370283ac416bddc8aeacfMD51AbordagemComputacionalDeteccao_Mendonça_2016.pdf.txtExtracted texttext/plain52453https://repositorio.ufrn.br/bitstream/123456789/43155/2/AbordagemComputacionalDeteccao_Mendon%c3%a7a_2016.pdf.txt3edd6a0084d370283ac416bddc8aeacfMD52CC-LICENSElicense_urlapplication/octet-stream49https://repositorio.ufrn.br/bitstream/123456789/43155/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_textapplication/octet-stream0https://repositorio.ufrn.br/bitstream/123456789/43155/4/license_textd41d8cd98f00b204e9800998ecf8427eMD54license_rdfapplication/octet-stream0https://repositorio.ufrn.br/bitstream/123456789/43155/5/license_rdfd41d8cd98f00b204e9800998ecf8427eMD55LICENSElicense.txttext/plain756https://repositorio.ufrn.br/bitstream/123456789/43155/6/license.txta80a9cda2756d355b388cc443c3d8a43MD56ORIGINALAbordagemComputacionalDeteccao_Mendonça_2016.pdfapplication/pdf1206316https://repositorio.ufrn.br/bitstream/123456789/43155/7/AbordagemComputacionalDeteccao_Mendon%c3%a7a_2016.pdfb684a6ceaca92e913a1a1965c320632dMD57123456789/431552021-10-06 08:14:16.19oai:https://repositorio.ufrn.br:123456789/43155PGNlbnRlcj48c3Ryb25nPlVOSVZFUlNJREFERSBGRURFUkFMIERPIFJJTyBHUkFOREUgRE8gTk9SVEU8L3N0cm9uZz48L2NlbnRlcj4KPGNlbnRlcj48c3Ryb25nPkJJQkxJT1RFQ0EgRElHSVRBTCBERSBNT05PR1JBRklBUzwvc3Ryb25nPjwvY2VudGVyPgoKPGNlbnRlcj5UZXJtbyBkZSBBdXRvcml6YcOnw6NvIHBhcmEgZGlzcG9uaWJpbGl6YcOnw6NvIGRlIE1vbm9ncmFmaWFzIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbyBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGUgTW9ub2dyYWZpYXMgKEJETSk8L2NlbnRlcj4KCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBtb25vZ3JhZmlhLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgKFVGUk4pIGEgZGlzcG9uaWJpbGl6YXIgYXRyYXbDqXMgZGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIE1vbm9ncmFmaWFzIGRhIFVGUk4sIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrAgOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIHN1Ym1ldGlkYSBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGEgZGF0YSBkZXN0YSBzdWJtaXNzw6NvLiAKRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-10-06T11:14:16Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pr_BR.fl_str_mv |
Abordagem computacional para detecção de aneuploidias fetais |
dc.title.alternative.pr_BR.fl_str_mv |
Computational Approach for detection of fetal aneuploidies |
title |
Abordagem computacional para detecção de aneuploidias fetais |
spellingShingle |
Abordagem computacional para detecção de aneuploidias fetais Mendonça, Amanda Kelly do Nascimento cffDNA cffDNA Aneuploidias Aneuploidies CAADy CAADy CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA HUMANA E MEDICA |
title_short |
Abordagem computacional para detecção de aneuploidias fetais |
title_full |
Abordagem computacional para detecção de aneuploidias fetais |
title_fullStr |
Abordagem computacional para detecção de aneuploidias fetais |
title_full_unstemmed |
Abordagem computacional para detecção de aneuploidias fetais |
title_sort |
Abordagem computacional para detecção de aneuploidias fetais |
author |
Mendonça, Amanda Kelly do Nascimento |
author_facet |
Mendonça, Amanda Kelly do Nascimento |
author_role |
author |
dc.contributor.referees1.none.fl_str_mv |
Costa , César Rennó |
dc.contributor.referees2.none.fl_str_mv |
Souza, Gustavo Antônio de |
dc.contributor.author.fl_str_mv |
Mendonça, Amanda Kelly do Nascimento |
dc.subject.pr_BR.fl_str_mv |
cffDNA cffDNA Aneuploidias Aneuploidies CAADy CAADy |
topic |
cffDNA cffDNA Aneuploidias Aneuploidies CAADy CAADy CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA HUMANA E MEDICA |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA HUMANA E MEDICA |
description |
The discovery of the cell free fetal DNA (cffDNA) in maternal plasma and serum allowed the development of new test for fetal disorders in a non-invasive way (NIPT). The detection of the cffDNA is possible around the seventh week, and its concentration increases along the gestational period. Those characteristics allow the early identification of many fetal issues and the palliative actions. Regarding the Next-Generation Sequencing (NGS) tech, several methods has been described on literature asserting a consistent sensibility to detection of aneuploidy cases as Down, Edward and Patau syndromes. We propose a method in sílico, CAADy (Computational Approach for Detection of Fetal Aneuploidies), a strategy to detection of fetal aneuploidies. That method removes outliers which can come from diferent technologies of sequencing and it will allow the identification of genetic diseases of chromosomal origin. In this study was used the method of z-score with internal reference calculated by median absolute deviation (MAD) for identify the cases of trisomy of chromosomes 13, 18 and 21 (2, 12 and 16 cases, respectively) included in the 903 samples of cffDNA availables in the SRA portal (http://www.ncbi.nlm.nih.gov/sra/SRA047257). We detected all cases of trisomies and with 100% of sensitivity and specificity. The confirmation of results observed in sílico were based on the karyotype. Therefore, our methodology was presented as great for the detection of trisomies. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-12-13 |
dc.date.accessioned.fl_str_mv |
2018-02-15T12:15:48Z 2021-10-06T11:14:16Z |
dc.date.available.fl_str_mv |
2018-02-15T12:15:48Z 2021-10-06T11:14:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.pr_BR.fl_str_mv |
2012911912 |
dc.identifier.citation.fl_str_mv |
MENDONÇA, Amanda Kelly do Nascimento. Abordagem computacional para detecção de aneuploidias fetais. 2016. 32 f. Monografia (Graduação em Biomedicina) - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal-RN, 2016. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/43155 |
identifier_str_mv |
2012911912 MENDONÇA, Amanda Kelly do Nascimento. Abordagem computacional para detecção de aneuploidias fetais. 2016. 32 f. Monografia (Graduação em Biomedicina) - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal-RN, 2016. |
url |
https://repositorio.ufrn.br/handle/123456789/43155 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.publisher.initials.fl_str_mv |
UFRN |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Biomedicina |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/43155/1/AbordagemComputacional_Mendon%c3%a7a_2016.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/43155/2/AbordagemComputacionalDeteccao_Mendon%c3%a7a_2016.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/43155/3/license_url https://repositorio.ufrn.br/bitstream/123456789/43155/4/license_text https://repositorio.ufrn.br/bitstream/123456789/43155/5/license_rdf https://repositorio.ufrn.br/bitstream/123456789/43155/6/license.txt https://repositorio.ufrn.br/bitstream/123456789/43155/7/AbordagemComputacionalDeteccao_Mendon%c3%a7a_2016.pdf |
bitstream.checksum.fl_str_mv |
3edd6a0084d370283ac416bddc8aeacf 3edd6a0084d370283ac416bddc8aeacf 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e a80a9cda2756d355b388cc443c3d8a43 b684a6ceaca92e913a1a1965c320632d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832632975851520 |