Abordagem computacional para detecção de aneuploidias fetais

Detalhes bibliográficos
Autor(a) principal: Mendonça, Amanda Kelly do Nascimento
Data de Publicação: 2016
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/43155
Resumo: The discovery of the cell free fetal DNA (cffDNA) in maternal plasma and serum allowed the development of new test for fetal disorders in a non-invasive way (NIPT). The detection of the cffDNA is possible around the seventh week, and its concentration increases along the gestational period. Those characteristics allow the early identification of many fetal issues and the palliative actions. Regarding the Next-Generation Sequencing (NGS) tech, several methods has been described on literature asserting a consistent sensibility to detection of aneuploidy cases as Down, Edward and Patau syndromes. We propose a method in sílico, CAADy (Computational Approach for Detection of Fetal Aneuploidies), a strategy to detection of fetal aneuploidies. That method removes outliers which can come from diferent technologies of sequencing and it will allow the identification of genetic diseases of chromosomal origin. In this study was used the method of z-score with internal reference calculated by median absolute deviation (MAD) for identify the cases of trisomy of chromosomes 13, 18 and 21 (2, 12 and 16 cases, respectively) included in the 903 samples of cffDNA availables in the SRA portal (http://www.ncbi.nlm.nih.gov/sra/SRA047257). We detected all cases of trisomies and with 100% of sensitivity and specificity. The confirmation of results observed in sílico were based on the karyotype. Therefore, our methodology was presented as great for the detection of trisomies.
id UFRN_557a26071225f6c5465c4095c89c16ee
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/43155
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Mendonça, Amanda Kelly do NascimentoCosta , César RennóSouza, Gustavo Antônio de2018-02-15T12:15:48Z2021-10-06T11:14:16Z2018-02-15T12:15:48Z2021-10-06T11:14:16Z2016-12-132012911912MENDONÇA, Amanda Kelly do Nascimento. Abordagem computacional para detecção de aneuploidias fetais. 2016. 32 f. Monografia (Graduação em Biomedicina) - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal-RN, 2016.https://repositorio.ufrn.br/handle/123456789/43155The discovery of the cell free fetal DNA (cffDNA) in maternal plasma and serum allowed the development of new test for fetal disorders in a non-invasive way (NIPT). The detection of the cffDNA is possible around the seventh week, and its concentration increases along the gestational period. Those characteristics allow the early identification of many fetal issues and the palliative actions. Regarding the Next-Generation Sequencing (NGS) tech, several methods has been described on literature asserting a consistent sensibility to detection of aneuploidy cases as Down, Edward and Patau syndromes. We propose a method in sílico, CAADy (Computational Approach for Detection of Fetal Aneuploidies), a strategy to detection of fetal aneuploidies. That method removes outliers which can come from diferent technologies of sequencing and it will allow the identification of genetic diseases of chromosomal origin. In this study was used the method of z-score with internal reference calculated by median absolute deviation (MAD) for identify the cases of trisomy of chromosomes 13, 18 and 21 (2, 12 and 16 cases, respectively) included in the 903 samples of cffDNA availables in the SRA portal (http://www.ncbi.nlm.nih.gov/sra/SRA047257). We detected all cases of trisomies and with 100% of sensitivity and specificity. The confirmation of results observed in sílico were based on the karyotype. Therefore, our methodology was presented as great for the detection of trisomies.A descoberta da presença do DNA fetal (cffDNA) no plasma e soro materno favoreceu novas abordagens ao diagnóstico não invasivo de desordens fetais (NIPT) promovendo uma melhor assistência ao pré-natal. A rápida detecção de cffDNA já é possível em torno da sétima semana gestacional com aumento de sua concentração ao longo do período. Assim, tais características possibilitam o reconhecimento antecipado de afecções fetais e a ação de medidas paliativas. No contexto de uso de Next-Generation Sequencing (NGS), diversos métodos têm sido descritos na literatura afirmando uma consistente sensibilidade para detecção de casos de aneuploidias como as síndromes de Down, Edward, Klinefelter, Patau e Turner. Nós propomos um método in sílico, CAADy (Abordagem Computacional para Detecção de Aneuploidias Fetais), uma estratégia para detecção de aneuploidias fetais. A metodologia é fundamentada na remoção de amostras outliers provenientes de diferentes tecnologias de sequenciamento e permitirá a identificação de enfermidades genéticas de origem cromossômica. Neste estudo foi usado o método de z-score com interferência interna (IR) calculado pelo desvio absoluto mediano (MAD) para identificar os casos de trissomia dos cromossomos 13, 18 e 21 (2, 12 e 16 casos, respectivamente) em 903 amostras de cffDNA disponíveis no portal SRA (http://www.ncbi.nlm.nih.gov/sra/SRA047257). Nós detectamos todos os casos de trissomias com 100% de sensibilidade e especificidade. A confirmação dos resultados foi baseada no cariótipo fetal. Assim, nossa metodologia apresentou grande potencial para detectar trissomias.Universidade Federal do Rio Grande do NorteUFRNBrasilBiomedicinacffDNAcffDNAAneuploidiasAneuploidiesCAADyCAADyCNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA HUMANA E MEDICAAbordagem computacional para detecção de aneuploidias fetaisComputational Approach for detection of fetal aneuploidiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTAbordagemComputacional_Mendonça_2016.pdf.txtExtracted texttext/plain52453https://repositorio.ufrn.br/bitstream/123456789/43155/1/AbordagemComputacional_Mendon%c3%a7a_2016.pdf.txt3edd6a0084d370283ac416bddc8aeacfMD51AbordagemComputacionalDeteccao_Mendonça_2016.pdf.txtExtracted texttext/plain52453https://repositorio.ufrn.br/bitstream/123456789/43155/2/AbordagemComputacionalDeteccao_Mendon%c3%a7a_2016.pdf.txt3edd6a0084d370283ac416bddc8aeacfMD52CC-LICENSElicense_urlapplication/octet-stream49https://repositorio.ufrn.br/bitstream/123456789/43155/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_textapplication/octet-stream0https://repositorio.ufrn.br/bitstream/123456789/43155/4/license_textd41d8cd98f00b204e9800998ecf8427eMD54license_rdfapplication/octet-stream0https://repositorio.ufrn.br/bitstream/123456789/43155/5/license_rdfd41d8cd98f00b204e9800998ecf8427eMD55LICENSElicense.txttext/plain756https://repositorio.ufrn.br/bitstream/123456789/43155/6/license.txta80a9cda2756d355b388cc443c3d8a43MD56ORIGINALAbordagemComputacionalDeteccao_Mendonça_2016.pdfapplication/pdf1206316https://repositorio.ufrn.br/bitstream/123456789/43155/7/AbordagemComputacionalDeteccao_Mendon%c3%a7a_2016.pdfb684a6ceaca92e913a1a1965c320632dMD57123456789/431552021-10-06 08:14:16.19oai:https://repositorio.ufrn.br:123456789/43155PGNlbnRlcj48c3Ryb25nPlVOSVZFUlNJREFERSBGRURFUkFMIERPIFJJTyBHUkFOREUgRE8gTk9SVEU8L3N0cm9uZz48L2NlbnRlcj4KPGNlbnRlcj48c3Ryb25nPkJJQkxJT1RFQ0EgRElHSVRBTCBERSBNT05PR1JBRklBUzwvc3Ryb25nPjwvY2VudGVyPgoKPGNlbnRlcj5UZXJtbyBkZSBBdXRvcml6YcOnw6NvIHBhcmEgZGlzcG9uaWJpbGl6YcOnw6NvIGRlIE1vbm9ncmFmaWFzIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbyBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGUgTW9ub2dyYWZpYXMgKEJETSk8L2NlbnRlcj4KCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBtb25vZ3JhZmlhLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgKFVGUk4pIGEgZGlzcG9uaWJpbGl6YXIgYXRyYXbDqXMgZGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIE1vbm9ncmFmaWFzIGRhIFVGUk4sIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrAgOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIHN1Ym1ldGlkYSBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGEgZGF0YSBkZXN0YSBzdWJtaXNzw6NvLiAKRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-10-06T11:14:16Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pr_BR.fl_str_mv Abordagem computacional para detecção de aneuploidias fetais
dc.title.alternative.pr_BR.fl_str_mv Computational Approach for detection of fetal aneuploidies
title Abordagem computacional para detecção de aneuploidias fetais
spellingShingle Abordagem computacional para detecção de aneuploidias fetais
Mendonça, Amanda Kelly do Nascimento
cffDNA
cffDNA
Aneuploidias
Aneuploidies
CAADy
CAADy
CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA HUMANA E MEDICA
title_short Abordagem computacional para detecção de aneuploidias fetais
title_full Abordagem computacional para detecção de aneuploidias fetais
title_fullStr Abordagem computacional para detecção de aneuploidias fetais
title_full_unstemmed Abordagem computacional para detecção de aneuploidias fetais
title_sort Abordagem computacional para detecção de aneuploidias fetais
author Mendonça, Amanda Kelly do Nascimento
author_facet Mendonça, Amanda Kelly do Nascimento
author_role author
dc.contributor.referees1.none.fl_str_mv Costa , César Rennó
dc.contributor.referees2.none.fl_str_mv Souza, Gustavo Antônio de
dc.contributor.author.fl_str_mv Mendonça, Amanda Kelly do Nascimento
dc.subject.pr_BR.fl_str_mv cffDNA
cffDNA
Aneuploidias
Aneuploidies
CAADy
CAADy
topic cffDNA
cffDNA
Aneuploidias
Aneuploidies
CAADy
CAADy
CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA HUMANA E MEDICA
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA HUMANA E MEDICA
description The discovery of the cell free fetal DNA (cffDNA) in maternal plasma and serum allowed the development of new test for fetal disorders in a non-invasive way (NIPT). The detection of the cffDNA is possible around the seventh week, and its concentration increases along the gestational period. Those characteristics allow the early identification of many fetal issues and the palliative actions. Regarding the Next-Generation Sequencing (NGS) tech, several methods has been described on literature asserting a consistent sensibility to detection of aneuploidy cases as Down, Edward and Patau syndromes. We propose a method in sílico, CAADy (Computational Approach for Detection of Fetal Aneuploidies), a strategy to detection of fetal aneuploidies. That method removes outliers which can come from diferent technologies of sequencing and it will allow the identification of genetic diseases of chromosomal origin. In this study was used the method of z-score with internal reference calculated by median absolute deviation (MAD) for identify the cases of trisomy of chromosomes 13, 18 and 21 (2, 12 and 16 cases, respectively) included in the 903 samples of cffDNA availables in the SRA portal (http://www.ncbi.nlm.nih.gov/sra/SRA047257). We detected all cases of trisomies and with 100% of sensitivity and specificity. The confirmation of results observed in sílico were based on the karyotype. Therefore, our methodology was presented as great for the detection of trisomies.
publishDate 2016
dc.date.issued.fl_str_mv 2016-12-13
dc.date.accessioned.fl_str_mv 2018-02-15T12:15:48Z
2021-10-06T11:14:16Z
dc.date.available.fl_str_mv 2018-02-15T12:15:48Z
2021-10-06T11:14:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.pr_BR.fl_str_mv 2012911912
dc.identifier.citation.fl_str_mv MENDONÇA, Amanda Kelly do Nascimento. Abordagem computacional para detecção de aneuploidias fetais. 2016. 32 f. Monografia (Graduação em Biomedicina) - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal-RN, 2016.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/43155
identifier_str_mv 2012911912
MENDONÇA, Amanda Kelly do Nascimento. Abordagem computacional para detecção de aneuploidias fetais. 2016. 32 f. Monografia (Graduação em Biomedicina) - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal-RN, 2016.
url https://repositorio.ufrn.br/handle/123456789/43155
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Biomedicina
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/43155/1/AbordagemComputacional_Mendon%c3%a7a_2016.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/43155/2/AbordagemComputacionalDeteccao_Mendon%c3%a7a_2016.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/43155/3/license_url
https://repositorio.ufrn.br/bitstream/123456789/43155/4/license_text
https://repositorio.ufrn.br/bitstream/123456789/43155/5/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/43155/6/license.txt
https://repositorio.ufrn.br/bitstream/123456789/43155/7/AbordagemComputacionalDeteccao_Mendon%c3%a7a_2016.pdf
bitstream.checksum.fl_str_mv 3edd6a0084d370283ac416bddc8aeacf
3edd6a0084d370283ac416bddc8aeacf
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
a80a9cda2756d355b388cc443c3d8a43
b684a6ceaca92e913a1a1965c320632d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832632975851520