Respiratory muscle training in children and adults with neuromuscular disease

Detalhes bibliográficos
Autor(a) principal: Dourado Junior, Mário Emílio Teixeira
Data de Publicação: 2019
Outros Autores: Silva, Ivanizia Soares, Pedrosa, Rafaela, Azevedo, Ingrid G, Forbes, Anne‐Marie, Fregonezi, Guilherme Augusto de Freitas, Ferreira, Gardênia Maria Holanda, Lima, Suzianne Ruth Hosanah
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
DOI: https://doi.org/10.1002/14651858.CD011711.pub2
Texto Completo: https://repositorio.ufrn.br/handle/123456789/54229
https://doi.org/10.1002/14651858.CD011711.pub2
Resumo: Background: Neuromuscular diseases (NMDs) are a heterogeneous group of diseases affecting the anterior horn cell of spinal cord, neuromuscular junction, peripheral nerves and muscles. NMDs cause physical disability usually due to progressive loss of strength in limb muscles, and some NMDs also cause respiratory muscle weakness. Respiratory muscle training (RMT) might be expected to improve respiratory muscle weakness; however, the effects of RMT are still uncertain. This systematic review will synthesize the available trial evidence on the effectiveness and safety of RMT in people with NMD, to inform clinical practice. Objectives:To assess the effects of respiratory muscle training (RMT) for neuromuscular disease (NMD) in adults and children, in comparison to sham training, no training, standard treatment, breathing exercises, or other intensities or types of RMT. Search methods: On 19 November 2018, we searched the Cochrane Neuromuscular Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. On 23 December 2018, we searched the US National Institutes for Health Clinical Trials Registry (ClinicalTrials.gov), the World Health Organization International Clinical Trials Registry Platform, and reference lists of the included studies. Selection criteria: We included randomized controlled trials (RCTs) and quasi‐RCTs, including cross‐over trials, of RMT in adults and children with a diagnosis of NMD of any degree of severity, who were living in the community, and who did not need mechanical ventilation. We compared trials of RMT (inspiratory muscle training (IMT) or expiratory muscle training (EMT), or both), with sham training, no training, standard treatment, different intensities of RMT, different types of RMT, or breathing exercises. Data collection and analysis: We followed standard Cochrane methodological procedures. Main results We included 11 studies involving 250 randomized participants with NMDs: three trials (N = 88) in people with amyotrophic lateral sclerosis (ALS; motor neuron disease), six trials (N = 112) in Duchenne muscular dystrophy (DMD), one trial (N = 23) in people with Becker muscular dystrophy (BMD) or limb‐girdle muscular dystrophy, and one trial (N = 27) in people with myasthenia gravis. Nine of the trials were at high risk of bias in at least one domain and many reported insufficient information for accurate assessment of the risk of bias. Populations, interventions, control interventions, and outcome measures were often different, which largely ruled out meta‐analysis. All included studies assessed lung capacity, our primary outcome, but four did not provide data for analysis (1 in people with ALS and three cross‐over studies in DMD). None provided long‐term data (over a year) and only one trial, in ALS, provided information on adverse events. Unscheduled hospitalisations for chest infection or acute exacerbation of chronic respiratory failure were not reported and physical function and quality of life were reported in one (ALS) trial. Amyotrophic lateral sclerosis (ALS) Three trials compared RMT versus sham training in ALS. Short‐term (8 weeks) effects of RMT on lung capacity in ALS showed no clear difference in the change of the per cent predicted forced vital capacity (FVC%) between EMT and sham EMT groups (mean difference (MD) 0.70, 95% confidence interval (CI) ‐8.48 to 9.88; N = 46; low‐certainty evidence). The mean difference (MD) in FVC% after four months' treatment was 10.86% in favour of IMT (95% CI ‐4.25 to 25.97; 1 trial, N = 24; low‐certainty evidence), which is larger than the minimal clinically important difference (MCID, as estimated in people with idiopathic pulmonary fibrosis). There was no clear difference between IMT and sham IMT groups, measured on the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALFRS; range of possible scores 0 = best to 40 = worst) (MD 0.85, 95% CI ‐2.16 to 3.85; 1 trial, N = 24; low‐certainty evidence) or quality of life, measured on the EuroQol‐5D (0 = worst to 100 = best) (MD 0.77, 95% CI ‐17.09 to 18.62; 1 trial, N = 24; low‐certainty evidence) over the medium term (4 months). One trial report stated that the IMT protocol had no adverse effect (very low‐certainty evidence). Duchenne muscular dystrophy (DMD) Two DMD trials compared RMT versus sham training in young males with DMD. In one study, the mean post‐intervention (6‐week) total lung capacity (TLC) favoured RMT (MD 0.45 L, 95% CI ‐0.24 to 1.14; 1 trial, N = 16; low‐certainty evidence). In the other trial there was no clear difference in post‐intervention (18 days) FVC between RMT and sham RMT (MD 0.16 L, 95% CI ‐0.31 to 0.63; 1 trial, N = 20; low‐certainty evidence). One RCT and three cross‐over trials compared a form of RMT with no training in males with DMD; the cross‐over trials did not provide suitable data. Post‐intervention (6‐month) values showed no clear difference between the RMT and no training groups in per cent predicted vital capacity (VC%) (MD 3.50, 95% CI ‐14.35 to 21.35; 1 trial, N = 30; low‐certainty evidence). Becker or limb‐girdle muscular dystrophy: One RCT (N = 21) compared 12 weeks of IMT with breathing exercises in people with Becker or limb‐girdle muscular dystrophy. The evidence was of very low certainty and conclusions could not be drawn. Myasthenia gravis: In myasthenia gravis, there may be no clear difference between RMT and breathing exercises on measures of lung capacity, in the short term (TLC MD ‐0.20 L, 95% CI ‐1.07 to 0.67; 1 trial, N = 27; low‐certainty evidence). Effects of RMT on quality of life are uncertain (1 trial; N = 27). Some trials reported effects of RMT on inspiratory and/or expiratory muscle strength; this evidence was also of low or very low certainty. Authors' conclusions: RMT may improve lung capacity and respiratory muscle strength in some NMDs. In ALS there may not be any clinically meaningful effect of RMT on physical functioning or quality of life and it is uncertain whether it causes adverse effects. Due to clinical heterogeneity between the trials and the small number of participants included in the analysis, together with the risk of bias, these results must be interpreted very cautiously.
id UFRN_cef7874f36f2a8bca1463e71bad4ce60
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/54229
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Dourado Junior, Mário Emílio TeixeiraSilva, Ivanizia SoaresPedrosa, RafaelaAzevedo, Ingrid GForbes, Anne‐MarieFregonezi, Guilherme Augusto de FreitasFerreira, Gardênia Maria HolandaLima, Suzianne Ruth Hosanahhttps://orcid.org/0000-0002-9462-22942023-07-27T18:38:11Z2023-07-27T18:38:11Z2019SILVA, Ivanizia s; PEDROSA, Rafaela; AZEVEDO, Ingrid G; FORBES, Anne-Marie; FREGONEZI, Guilherme Af; DOURADO JUNIOR, Mário Et; LIMA, Suzianne Rh; FERREIRA, Gardenia Mh. Respiratory muscle training in children and adults with neuromuscular disease. Cochrane Database Of Systematic Reviews, [S.L.], p. 1465, 5 set. 2019. Wiley. http://dx.doi.org/10.1002/14651858.cd011711.pub2. Disponível em: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011711.pub2/full#CD011711-abs-0001. Acesso em: 18 jul. 2023.https://repositorio.ufrn.br/handle/123456789/54229https://doi.org/10.1002/14651858.CD011711.pub2Background: Neuromuscular diseases (NMDs) are a heterogeneous group of diseases affecting the anterior horn cell of spinal cord, neuromuscular junction, peripheral nerves and muscles. NMDs cause physical disability usually due to progressive loss of strength in limb muscles, and some NMDs also cause respiratory muscle weakness. Respiratory muscle training (RMT) might be expected to improve respiratory muscle weakness; however, the effects of RMT are still uncertain. This systematic review will synthesize the available trial evidence on the effectiveness and safety of RMT in people with NMD, to inform clinical practice. Objectives:To assess the effects of respiratory muscle training (RMT) for neuromuscular disease (NMD) in adults and children, in comparison to sham training, no training, standard treatment, breathing exercises, or other intensities or types of RMT. Search methods: On 19 November 2018, we searched the Cochrane Neuromuscular Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. On 23 December 2018, we searched the US National Institutes for Health Clinical Trials Registry (ClinicalTrials.gov), the World Health Organization International Clinical Trials Registry Platform, and reference lists of the included studies. Selection criteria: We included randomized controlled trials (RCTs) and quasi‐RCTs, including cross‐over trials, of RMT in adults and children with a diagnosis of NMD of any degree of severity, who were living in the community, and who did not need mechanical ventilation. We compared trials of RMT (inspiratory muscle training (IMT) or expiratory muscle training (EMT), or both), with sham training, no training, standard treatment, different intensities of RMT, different types of RMT, or breathing exercises. Data collection and analysis: We followed standard Cochrane methodological procedures. Main results We included 11 studies involving 250 randomized participants with NMDs: three trials (N = 88) in people with amyotrophic lateral sclerosis (ALS; motor neuron disease), six trials (N = 112) in Duchenne muscular dystrophy (DMD), one trial (N = 23) in people with Becker muscular dystrophy (BMD) or limb‐girdle muscular dystrophy, and one trial (N = 27) in people with myasthenia gravis. Nine of the trials were at high risk of bias in at least one domain and many reported insufficient information for accurate assessment of the risk of bias. Populations, interventions, control interventions, and outcome measures were often different, which largely ruled out meta‐analysis. All included studies assessed lung capacity, our primary outcome, but four did not provide data for analysis (1 in people with ALS and three cross‐over studies in DMD). None provided long‐term data (over a year) and only one trial, in ALS, provided information on adverse events. Unscheduled hospitalisations for chest infection or acute exacerbation of chronic respiratory failure were not reported and physical function and quality of life were reported in one (ALS) trial. Amyotrophic lateral sclerosis (ALS) Three trials compared RMT versus sham training in ALS. Short‐term (8 weeks) effects of RMT on lung capacity in ALS showed no clear difference in the change of the per cent predicted forced vital capacity (FVC%) between EMT and sham EMT groups (mean difference (MD) 0.70, 95% confidence interval (CI) ‐8.48 to 9.88; N = 46; low‐certainty evidence). The mean difference (MD) in FVC% after four months' treatment was 10.86% in favour of IMT (95% CI ‐4.25 to 25.97; 1 trial, N = 24; low‐certainty evidence), which is larger than the minimal clinically important difference (MCID, as estimated in people with idiopathic pulmonary fibrosis). There was no clear difference between IMT and sham IMT groups, measured on the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALFRS; range of possible scores 0 = best to 40 = worst) (MD 0.85, 95% CI ‐2.16 to 3.85; 1 trial, N = 24; low‐certainty evidence) or quality of life, measured on the EuroQol‐5D (0 = worst to 100 = best) (MD 0.77, 95% CI ‐17.09 to 18.62; 1 trial, N = 24; low‐certainty evidence) over the medium term (4 months). One trial report stated that the IMT protocol had no adverse effect (very low‐certainty evidence). Duchenne muscular dystrophy (DMD) Two DMD trials compared RMT versus sham training in young males with DMD. In one study, the mean post‐intervention (6‐week) total lung capacity (TLC) favoured RMT (MD 0.45 L, 95% CI ‐0.24 to 1.14; 1 trial, N = 16; low‐certainty evidence). In the other trial there was no clear difference in post‐intervention (18 days) FVC between RMT and sham RMT (MD 0.16 L, 95% CI ‐0.31 to 0.63; 1 trial, N = 20; low‐certainty evidence). One RCT and three cross‐over trials compared a form of RMT with no training in males with DMD; the cross‐over trials did not provide suitable data. Post‐intervention (6‐month) values showed no clear difference between the RMT and no training groups in per cent predicted vital capacity (VC%) (MD 3.50, 95% CI ‐14.35 to 21.35; 1 trial, N = 30; low‐certainty evidence). Becker or limb‐girdle muscular dystrophy: One RCT (N = 21) compared 12 weeks of IMT with breathing exercises in people with Becker or limb‐girdle muscular dystrophy. The evidence was of very low certainty and conclusions could not be drawn. Myasthenia gravis: In myasthenia gravis, there may be no clear difference between RMT and breathing exercises on measures of lung capacity, in the short term (TLC MD ‐0.20 L, 95% CI ‐1.07 to 0.67; 1 trial, N = 27; low‐certainty evidence). Effects of RMT on quality of life are uncertain (1 trial; N = 27). Some trials reported effects of RMT on inspiratory and/or expiratory muscle strength; this evidence was also of low or very low certainty. Authors' conclusions: RMT may improve lung capacity and respiratory muscle strength in some NMDs. In ALS there may not be any clinically meaningful effect of RMT on physical functioning or quality of life and it is uncertain whether it causes adverse effects. Due to clinical heterogeneity between the trials and the small number of participants included in the analysis, together with the risk of bias, these results must be interpreted very cautiously.Las enfermedades neuromusculares (ENM) son un grupo heterogéneo de enfermedades que afectan las células del hasta anterior de la médula espinal, la unión neuromuscular, los nervios periféricos y los músculos. Las ENM causan discapacidad física por lo general debido a la pérdida progresiva de fuerza en los músculos de las extremidades, y algunas ENM también causan debilidad muscular respiratoria. Se espera que el entrenamiento muscular respiratorio (EMR) mejore la debilidad muscular respiratoria; sin embargo, aún no se conocen los efectos del EMR. Esta revisión sistemática sintetizará la evidencia de los ensayos disponibles sobre la efectividad y la seguridad del EMR en pacientes con ENM, para informar la práctica clínica. Objetivos Evaluar los efectos del entrenamiento muscular respiratorio (EMR) para las enfermedades neuromusculares (ENM) en adultos y niños, en comparación con el entrenamiento simulado, ningún entrenamiento, tratamiento estándar, ejercicios de respiración u otras intensidades o tipos de EMR. Métodos de búsqueda El 19 de noviembre 2018, se hicieron búsquedas en el registro especializado del Grupo Cochrane Neuromuscular, en el Registro Cochrane Central de Ensayos Controlados (CENTRAL), MEDLINE y en Embase. El 23 de diciembre de 2018 se realizaron búsquedas en el National Institutes for Health Clinical Trials Registry (ClinicalTrials.gov) de los EE.UU. (ClinicalTrials.gov), en la International Clinical Trials Registry Platform de la Organización Mundial de la Salud y en las listas de referencias de los estudios incluidos. Criterios de selección Se incluyeron ensayos controlados aleatorizados (ECA) y cuasialeatorizados, incluidos los ensayos cruzados (cross‐over), del EMR en adultos y niños con un diagnóstico de ENM de cualquier gravedad, que vivían en la comunidad y que no necesitaban ventilación mecánica. Se compararon los ensayos del EMR (entrenamiento muscular inspiratorio [EMI] o entrenamiento muscular espiratorio [EME], o ambos), con entrenamiento simulado, ningún entrenamiento, tratamiento estándar, diferentes intensidades del EMR, diferentes tipos de EMR o ejercicios de respiración. Obtención y análisis de los datos Se utilizaron los procedimientos metodológicos Cochrane estándar. Resultados principales Se incluyeron 11 estudios con 250 participantes con ENM asignados al azar: tres ensayos (N = 88) en pacientes con esclerosis lateral amiotrófica (ELA; enfermedad de la motoneurona), seis ensayos (N = 112) en pacientes con distrofia muscular de Duchenne (DMD), un ensayo (N = 23) en pacientes con distrofia muscular de Becker (DMB) o distrofia muscular de cinturas, y un ensayo (N = 27) en pacientes con miastenia gravis. Nueve de los ensayos tuvieron un alto riesgo de sesgo en al menos un dominio y muchos presentaron información insuficiente para realizar una evaluación precisa del riesgo de sesgo. Las poblaciones, las intervenciones, las intervenciones de control y las medidas de resultado a menudo fueron diferentes, lo cual descartó en gran medida la posibilidad de realizar un metanálisis. Todos los estudios incluidos evaluaron la capacidad pulmonar, la medida de resultado primaria, aunque cuatro no proporcionaron datos para el análisis (uno en pacientes con ELA y tres estudios cruzados [cross‐over] en la DMD). Ninguno proporcionó datos a largo plazo (más de un año) y solo un ensayo, sobre la ELA, proporcionó información sobre los eventos adversos. No se informaron las hospitalizaciones no programadas por infección torácica o exacerbaciones agudas de la insuficiencia respiratoria crónica y se informó la función física y la calidad de vida (ELA) en un ensayo. Esclerosis lateral amiotrófica (ELA) Tres ensayos compararon el EMR versus entrenamiento simulado en la ELA. Los efectos a corto plazo (8 semanas) del EMR sobre la capacidad pulmonar en la ELA no mostraron diferencias claras en el cambio en el porcentaje previsto de la capacidad vital forzada (CVF%) entre los grupos de EME y de EME simulado (diferencia de medias [DM] 0,70; intervalo de confianza [IC] del 95%: ‐8,48 a 9,88; N = 46; evidencia de baja certeza). La diferencia de medias (DM) en la CVF% después de cuatro meses de tratamiento fue de 10,86% a favor de la EMI (IC del 95%: ‐4,25 a 25,97; 1 ensayo, N = 24; evidencia de baja certeza), que es mayor que la diferencia mínima clínicamente importante (DMCI, según se calculó en pacientes con fibrosis pulmonar idiopática). No hubo diferencias claras entre los grupos con el EMI y el EMI simulado, medido en la Amyotrophic Lateral Sclerosis Functional Rating Scale (ALFRS; rango de posibles puntuaciones 0 = mejor a 40 = peor) (DM 0,85; IC del 95%: ‐2,16 a 3,85; 1 ensayo, N = 24; evidencia de baja certeza) ni en la calidad de vida, medido en el EuroQol‐5D (0 = peor a 100 = mejor) (DM 0,77; IC del 95%: ‐17,09 a 18,62; 1 ensayo, N = 24; evidencia de baja certeza) a plazo medio (4 meses). El informe de un ensayo indicó que el protocolo de EMI no tuvo efectos adversos (evidencia de muy baja certeza). Distrofia muscular de Duchenne (DMD) Dos ensayos de la DMD compararon el EMR versus entrenamiento simulado en hombres jóvenes con DMD. En un estudio, la media de la capacidad pulmonar total (CPT) después de la intervención (6 semanas) favoreció al EMR (DM 0,45 L; IC del 95%: ‐0,24 a 1,14; un ensayo, N = 16; evidencia de baja certeza). En el otro ensayo no hubo diferencias claras en la CVF posterior a la intervención (18 días) entre el EMR y el EMR simulado (DM 0,16 L; IC del 95%: ‐0,31 a 0,63; un ensayo, N = 20; evidencia de baja certeza). Un ECA y tres ensayos cruzados (cross‐over) compararon una forma de EMR con ningún entrenamiento en pacientes hombres con DMD; los ensayos cruzados (cross‐over) no proporcionaron datos adecuados. Los valores posteriores a la intervención (6 meses) no mostraron diferencias claras entre los grupos de EMR y los de ningún entrenamiento en el porcentaje previsto de la capacidad vital (CV%) (DM 3,50; IC del 95%: ‐14,35 a 21,35; un ensayo, N = 30; evidencia de baja certeza). Distrofia muscular de Becker o de cinturas Un ECA (N = 21) comparó 12 semanas de EMI con ejercicios de respiración en pacientes con distrofia de Becker o distrofia muscular de la cinturas. La evidencia fue de muy baja certeza y no fue posible establecer conclusiones. Miastenia gravis En la miastenia gravis, puede no haber diferencias claras entre el EMR y los ejercicios respiratorios en las medidas de la capacidad pulmonar a corto plazo (CPT DM ‐0,20 L; IC del 95%: ‐1,07 a 0,67; 1 ensayo, N = 27; evidencia de baja certeza). No se conocen los efectos del EMR sobre la calidad de vida (1 ensayo; N = 27). Algunos ensayos informaron efectos del EMR sobre la fuerza muscular inspiratoria o espiratoria; esta evidencia también fue de certeza baja o muy baja. Conclusiones de los autores El EMR puede mejorar la capacidad pulmonar y la fuerza muscular respiratoria en algunas ENM. En la ELA puede no haber ningún efecto clínicamente significativo del EMR sobre el funcionamiento físico o la calidad de vida y no está claro si causa efectos adversos. Debido a la heterogeneidad clínica entre los ensayos y el pequeño número de participantes incluidos en el análisis, junto con el riesgo de sesgo, estos resultados deben interpretarse con mucha cautela.Wileytreinamento muscular respiratóriorespiratory muscle trainingneuromuscular diseaseRespiratory muscle training in children and adults with neuromuscular diseaseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALRespiratoryMuscleTraining_DouradoJr_2019.pdfRespiratoryMuscleTraining_DouradoJr_2019.pdfapplication/pdf809828https://repositorio.ufrn.br/bitstream/123456789/54229/1/RespiratoryMuscleTraining_DouradoJr_2019.pdfe18ad67378737ec643b329861f48b9c5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/54229/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52123456789/542292023-07-27 15:38:12.061oai:https://repositorio.ufrn.br:123456789/54229Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-07-27T18:38:12Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Respiratory muscle training in children and adults with neuromuscular disease
title Respiratory muscle training in children and adults with neuromuscular disease
spellingShingle Respiratory muscle training in children and adults with neuromuscular disease
Dourado Junior, Mário Emílio Teixeira
treinamento muscular respiratório
respiratory muscle training
neuromuscular disease
title_short Respiratory muscle training in children and adults with neuromuscular disease
title_full Respiratory muscle training in children and adults with neuromuscular disease
title_fullStr Respiratory muscle training in children and adults with neuromuscular disease
title_full_unstemmed Respiratory muscle training in children and adults with neuromuscular disease
title_sort Respiratory muscle training in children and adults with neuromuscular disease
author Dourado Junior, Mário Emílio Teixeira
author_facet Dourado Junior, Mário Emílio Teixeira
Silva, Ivanizia Soares
Pedrosa, Rafaela
Azevedo, Ingrid G
Forbes, Anne‐Marie
Fregonezi, Guilherme Augusto de Freitas
Ferreira, Gardênia Maria Holanda
Lima, Suzianne Ruth Hosanah
author_role author
author2 Silva, Ivanizia Soares
Pedrosa, Rafaela
Azevedo, Ingrid G
Forbes, Anne‐Marie
Fregonezi, Guilherme Augusto de Freitas
Ferreira, Gardênia Maria Holanda
Lima, Suzianne Ruth Hosanah
author2_role author
author
author
author
author
author
author
dc.contributor.authorID.pt_BR.fl_str_mv https://orcid.org/0000-0002-9462-2294
dc.contributor.author.fl_str_mv Dourado Junior, Mário Emílio Teixeira
Silva, Ivanizia Soares
Pedrosa, Rafaela
Azevedo, Ingrid G
Forbes, Anne‐Marie
Fregonezi, Guilherme Augusto de Freitas
Ferreira, Gardênia Maria Holanda
Lima, Suzianne Ruth Hosanah
dc.subject.por.fl_str_mv treinamento muscular respiratório
respiratory muscle training
neuromuscular disease
topic treinamento muscular respiratório
respiratory muscle training
neuromuscular disease
description Background: Neuromuscular diseases (NMDs) are a heterogeneous group of diseases affecting the anterior horn cell of spinal cord, neuromuscular junction, peripheral nerves and muscles. NMDs cause physical disability usually due to progressive loss of strength in limb muscles, and some NMDs also cause respiratory muscle weakness. Respiratory muscle training (RMT) might be expected to improve respiratory muscle weakness; however, the effects of RMT are still uncertain. This systematic review will synthesize the available trial evidence on the effectiveness and safety of RMT in people with NMD, to inform clinical practice. Objectives:To assess the effects of respiratory muscle training (RMT) for neuromuscular disease (NMD) in adults and children, in comparison to sham training, no training, standard treatment, breathing exercises, or other intensities or types of RMT. Search methods: On 19 November 2018, we searched the Cochrane Neuromuscular Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. On 23 December 2018, we searched the US National Institutes for Health Clinical Trials Registry (ClinicalTrials.gov), the World Health Organization International Clinical Trials Registry Platform, and reference lists of the included studies. Selection criteria: We included randomized controlled trials (RCTs) and quasi‐RCTs, including cross‐over trials, of RMT in adults and children with a diagnosis of NMD of any degree of severity, who were living in the community, and who did not need mechanical ventilation. We compared trials of RMT (inspiratory muscle training (IMT) or expiratory muscle training (EMT), or both), with sham training, no training, standard treatment, different intensities of RMT, different types of RMT, or breathing exercises. Data collection and analysis: We followed standard Cochrane methodological procedures. Main results We included 11 studies involving 250 randomized participants with NMDs: three trials (N = 88) in people with amyotrophic lateral sclerosis (ALS; motor neuron disease), six trials (N = 112) in Duchenne muscular dystrophy (DMD), one trial (N = 23) in people with Becker muscular dystrophy (BMD) or limb‐girdle muscular dystrophy, and one trial (N = 27) in people with myasthenia gravis. Nine of the trials were at high risk of bias in at least one domain and many reported insufficient information for accurate assessment of the risk of bias. Populations, interventions, control interventions, and outcome measures were often different, which largely ruled out meta‐analysis. All included studies assessed lung capacity, our primary outcome, but four did not provide data for analysis (1 in people with ALS and three cross‐over studies in DMD). None provided long‐term data (over a year) and only one trial, in ALS, provided information on adverse events. Unscheduled hospitalisations for chest infection or acute exacerbation of chronic respiratory failure were not reported and physical function and quality of life were reported in one (ALS) trial. Amyotrophic lateral sclerosis (ALS) Three trials compared RMT versus sham training in ALS. Short‐term (8 weeks) effects of RMT on lung capacity in ALS showed no clear difference in the change of the per cent predicted forced vital capacity (FVC%) between EMT and sham EMT groups (mean difference (MD) 0.70, 95% confidence interval (CI) ‐8.48 to 9.88; N = 46; low‐certainty evidence). The mean difference (MD) in FVC% after four months' treatment was 10.86% in favour of IMT (95% CI ‐4.25 to 25.97; 1 trial, N = 24; low‐certainty evidence), which is larger than the minimal clinically important difference (MCID, as estimated in people with idiopathic pulmonary fibrosis). There was no clear difference between IMT and sham IMT groups, measured on the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALFRS; range of possible scores 0 = best to 40 = worst) (MD 0.85, 95% CI ‐2.16 to 3.85; 1 trial, N = 24; low‐certainty evidence) or quality of life, measured on the EuroQol‐5D (0 = worst to 100 = best) (MD 0.77, 95% CI ‐17.09 to 18.62; 1 trial, N = 24; low‐certainty evidence) over the medium term (4 months). One trial report stated that the IMT protocol had no adverse effect (very low‐certainty evidence). Duchenne muscular dystrophy (DMD) Two DMD trials compared RMT versus sham training in young males with DMD. In one study, the mean post‐intervention (6‐week) total lung capacity (TLC) favoured RMT (MD 0.45 L, 95% CI ‐0.24 to 1.14; 1 trial, N = 16; low‐certainty evidence). In the other trial there was no clear difference in post‐intervention (18 days) FVC between RMT and sham RMT (MD 0.16 L, 95% CI ‐0.31 to 0.63; 1 trial, N = 20; low‐certainty evidence). One RCT and three cross‐over trials compared a form of RMT with no training in males with DMD; the cross‐over trials did not provide suitable data. Post‐intervention (6‐month) values showed no clear difference between the RMT and no training groups in per cent predicted vital capacity (VC%) (MD 3.50, 95% CI ‐14.35 to 21.35; 1 trial, N = 30; low‐certainty evidence). Becker or limb‐girdle muscular dystrophy: One RCT (N = 21) compared 12 weeks of IMT with breathing exercises in people with Becker or limb‐girdle muscular dystrophy. The evidence was of very low certainty and conclusions could not be drawn. Myasthenia gravis: In myasthenia gravis, there may be no clear difference between RMT and breathing exercises on measures of lung capacity, in the short term (TLC MD ‐0.20 L, 95% CI ‐1.07 to 0.67; 1 trial, N = 27; low‐certainty evidence). Effects of RMT on quality of life are uncertain (1 trial; N = 27). Some trials reported effects of RMT on inspiratory and/or expiratory muscle strength; this evidence was also of low or very low certainty. Authors' conclusions: RMT may improve lung capacity and respiratory muscle strength in some NMDs. In ALS there may not be any clinically meaningful effect of RMT on physical functioning or quality of life and it is uncertain whether it causes adverse effects. Due to clinical heterogeneity between the trials and the small number of participants included in the analysis, together with the risk of bias, these results must be interpreted very cautiously.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2023-07-27T18:38:11Z
dc.date.available.fl_str_mv 2023-07-27T18:38:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Ivanizia s; PEDROSA, Rafaela; AZEVEDO, Ingrid G; FORBES, Anne-Marie; FREGONEZI, Guilherme Af; DOURADO JUNIOR, Mário Et; LIMA, Suzianne Rh; FERREIRA, Gardenia Mh. Respiratory muscle training in children and adults with neuromuscular disease. Cochrane Database Of Systematic Reviews, [S.L.], p. 1465, 5 set. 2019. Wiley. http://dx.doi.org/10.1002/14651858.cd011711.pub2. Disponível em: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011711.pub2/full#CD011711-abs-0001. Acesso em: 18 jul. 2023.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/54229
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1002/14651858.CD011711.pub2
identifier_str_mv SILVA, Ivanizia s; PEDROSA, Rafaela; AZEVEDO, Ingrid G; FORBES, Anne-Marie; FREGONEZI, Guilherme Af; DOURADO JUNIOR, Mário Et; LIMA, Suzianne Rh; FERREIRA, Gardenia Mh. Respiratory muscle training in children and adults with neuromuscular disease. Cochrane Database Of Systematic Reviews, [S.L.], p. 1465, 5 set. 2019. Wiley. http://dx.doi.org/10.1002/14651858.cd011711.pub2. Disponível em: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011711.pub2/full#CD011711-abs-0001. Acesso em: 18 jul. 2023.
url https://repositorio.ufrn.br/handle/123456789/54229
https://doi.org/10.1002/14651858.CD011711.pub2
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/54229/1/RespiratoryMuscleTraining_DouradoJr_2019.pdf
https://repositorio.ufrn.br/bitstream/123456789/54229/2/license.txt
bitstream.checksum.fl_str_mv e18ad67378737ec643b329861f48b9c5
e9597aa2854d128fd968be5edc8a28d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1823686699407900672