Biophysical indices of the Sucuru-PB River Basin using Google Earth Engine

Detalhes bibliográficos
Autor(a) principal: Sousa, José Hugo Simplicio de
Data de Publicação: 2023
Outros Autores: Ribeiro, George do Nascimento, Francisco, Paulo Roberto Megna, Silva Júnior, Osmar Antônio da, Teodomiro Silva, Luiz Heitor Gonçalves, Nóbrega, Jarlean Lopes
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Geama
Texto Completo: https://www.journals.ufrpe.br/index.php/geama/article/view/5725
Resumo: The Sucuru River Basin covers an area of 1,652.5 km² and requires efficient monitoring of its natural resources. Remote Sensing (RS) has emerged as a crucial tool for this purpose. This study aimed to analyze the dynamics of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in relation to variations in rainfall during the period from 2001 to 2019. To carry out this analysis, the Google Earth Engine (GEE) platform was used, along with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and TerraClimate sensors, using JavaScript programming. Pearson's correlation coefficient (r) in the R® software was applied to assess the relationships between NDVI time series data and rainfall, as well as between LST data and rainfall. This study highlighted the effectiveness of the GEE platform in processing the images, allowing for a comprehensive analysis of the dynamics of the Sucuru River basin and its relationship with key climatic factors, providing crucial information for managing water resources in the region, highlighting the importance of RS as an effective tool for monitoring the natural resources of river basins. Pearson's correlation coefficients revealed a moderate correlation between NDVI and rainfall, as well as between LST and rainfall, indicating a strong association between vegetation dynamics and LST with rainfall patterns.
id UFRPE-3_9ffc95fb07b15333d241d57b3dfc2e17
oai_identifier_str oai:ojs.10.0.7.8:article/5725
network_acronym_str UFRPE-3
network_name_str Revista Geama
repository_id_str
spelling Biophysical indices of the Sucuru-PB River Basin using Google Earth EngineÍndices biofísicos da Bacia Hidrográfica do rio Sucuru-PB utilizando o Google Earth Enginemulti-temporalsemiáridogeotecnologiasThe Sucuru River Basin covers an area of 1,652.5 km² and requires efficient monitoring of its natural resources. Remote Sensing (RS) has emerged as a crucial tool for this purpose. This study aimed to analyze the dynamics of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in relation to variations in rainfall during the period from 2001 to 2019. To carry out this analysis, the Google Earth Engine (GEE) platform was used, along with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and TerraClimate sensors, using JavaScript programming. Pearson's correlation coefficient (r) in the R® software was applied to assess the relationships between NDVI time series data and rainfall, as well as between LST data and rainfall. This study highlighted the effectiveness of the GEE platform in processing the images, allowing for a comprehensive analysis of the dynamics of the Sucuru River basin and its relationship with key climatic factors, providing crucial information for managing water resources in the region, highlighting the importance of RS as an effective tool for monitoring the natural resources of river basins. Pearson's correlation coefficients revealed a moderate correlation between NDVI and rainfall, as well as between LST and rainfall, indicating a strong association between vegetation dynamics and LST with rainfall patterns.A Bacia Hidrográfica do rio Sucuru-PB abrange uma área de 1.652,5 km², e requer monitoramento eficiente de seus recursos naturais. O Sensoriamento Remoto (SR) emerge como uma ferramenta crucial para essa finalidade. Este estudo teve como objetivo a análise da dinâmica do Índice de Vegetação por Diferença Normalizada (NDVI) e da Temperatura da Superfície Terrestre (LST) em relação às variações na precipitação pluviométrica durante o período de 2001 a 2019. Para realizar essa análise, a plataforma Google Earth Engine (GEE) foi empregada, juntamente com dados dos sensores Moderate Resolution Imaging Spectroradiometer (MODIS) e TerraClimate, utilizando programação em JavaScript. O coeficiente de correlação de Pearson (r) no software R® foi aplicado para avaliar as relações entre os dados da série temporal do NDVI e da precipitação pluviométrica, bem como entre os dados da LST e a precipitação pluviométrica. Este estudo destacou a eficácia da plataforma GEE no processamento das imagens, permitindo uma análise abrangente da dinâmica da bacia do rio Sucuru e sua relação com fatores climáticos fundamentais, fornecendo informações cruciais para a gestão dos recursos hídricos na região, destacando a importância do SR como uma ferramenta eficaz para monitorar os recursos naturais das bacias hidrográficas. Os coeficientes de correlação de Pearson revelaram uma correlação moderada entre o NDVI e a precipitação pluviométrica, bem como entre a LST e a precipitação pluviométrica, indicando uma forte associação entre a dinâmica da vegetação e a LST com os padrões de precipitação pluviométrica.Geama Journal - Environmental SciencesRevista Geama2023-11-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.journals.ufrpe.br/index.php/geama/article/view/5725Geama Journal - Environmental Sciences; Vol. 9 No. 3 (2023); 86-94Revista Geama; v. 9 n. 3 (2023); 86-942447-0740reponame:Revista Geamainstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEporhttps://www.journals.ufrpe.br/index.php/geama/article/view/5725/482485115Copyright (c) 2023 Revista Geamahttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessSousa, José Hugo Simplicio deRibeiro, George do NascimentoFrancisco, Paulo Roberto MegnaSilva Júnior, Osmar Antônio daTeodomiro Silva, Luiz Heitor GonçalvesNóbrega, Jarlean Lopes2023-11-25T22:07:03Zoai:ojs.10.0.7.8:article/5725Revistahttps://www.journals.ufrpe.br/index.php/geamaPUBhttps://www.journals.ufrpe.br/index.php/geama/oaijosemachado@ufrpe.br2447-07402447-0740opendoar:2023-11-25T22:07:03Revista Geama - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.none.fl_str_mv Biophysical indices of the Sucuru-PB River Basin using Google Earth Engine
Índices biofísicos da Bacia Hidrográfica do rio Sucuru-PB utilizando o Google Earth Engine
title Biophysical indices of the Sucuru-PB River Basin using Google Earth Engine
spellingShingle Biophysical indices of the Sucuru-PB River Basin using Google Earth Engine
Sousa, José Hugo Simplicio de
multi-temporal
semiárido
geotecnologias
title_short Biophysical indices of the Sucuru-PB River Basin using Google Earth Engine
title_full Biophysical indices of the Sucuru-PB River Basin using Google Earth Engine
title_fullStr Biophysical indices of the Sucuru-PB River Basin using Google Earth Engine
title_full_unstemmed Biophysical indices of the Sucuru-PB River Basin using Google Earth Engine
title_sort Biophysical indices of the Sucuru-PB River Basin using Google Earth Engine
author Sousa, José Hugo Simplicio de
author_facet Sousa, José Hugo Simplicio de
Ribeiro, George do Nascimento
Francisco, Paulo Roberto Megna
Silva Júnior, Osmar Antônio da
Teodomiro Silva, Luiz Heitor Gonçalves
Nóbrega, Jarlean Lopes
author_role author
author2 Ribeiro, George do Nascimento
Francisco, Paulo Roberto Megna
Silva Júnior, Osmar Antônio da
Teodomiro Silva, Luiz Heitor Gonçalves
Nóbrega, Jarlean Lopes
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Sousa, José Hugo Simplicio de
Ribeiro, George do Nascimento
Francisco, Paulo Roberto Megna
Silva Júnior, Osmar Antônio da
Teodomiro Silva, Luiz Heitor Gonçalves
Nóbrega, Jarlean Lopes
dc.subject.por.fl_str_mv multi-temporal
semiárido
geotecnologias
topic multi-temporal
semiárido
geotecnologias
description The Sucuru River Basin covers an area of 1,652.5 km² and requires efficient monitoring of its natural resources. Remote Sensing (RS) has emerged as a crucial tool for this purpose. This study aimed to analyze the dynamics of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in relation to variations in rainfall during the period from 2001 to 2019. To carry out this analysis, the Google Earth Engine (GEE) platform was used, along with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and TerraClimate sensors, using JavaScript programming. Pearson's correlation coefficient (r) in the R® software was applied to assess the relationships between NDVI time series data and rainfall, as well as between LST data and rainfall. This study highlighted the effectiveness of the GEE platform in processing the images, allowing for a comprehensive analysis of the dynamics of the Sucuru River basin and its relationship with key climatic factors, providing crucial information for managing water resources in the region, highlighting the importance of RS as an effective tool for monitoring the natural resources of river basins. Pearson's correlation coefficients revealed a moderate correlation between NDVI and rainfall, as well as between LST and rainfall, indicating a strong association between vegetation dynamics and LST with rainfall patterns.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-25
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.journals.ufrpe.br/index.php/geama/article/view/5725
url https://www.journals.ufrpe.br/index.php/geama/article/view/5725
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.journals.ufrpe.br/index.php/geama/article/view/5725/482485115
dc.rights.driver.fl_str_mv Copyright (c) 2023 Revista Geama
https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Revista Geama
https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Geama Journal - Environmental Sciences
Revista Geama
publisher.none.fl_str_mv Geama Journal - Environmental Sciences
Revista Geama
dc.source.none.fl_str_mv Geama Journal - Environmental Sciences; Vol. 9 No. 3 (2023); 86-94
Revista Geama; v. 9 n. 3 (2023); 86-94
2447-0740
reponame:Revista Geama
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Revista Geama
collection Revista Geama
repository.name.fl_str_mv Revista Geama - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv josemachado@ufrpe.br
_version_ 1809218600828928000