Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.

Detalhes bibliográficos
Autor(a) principal: Santos, Matheus Augusto Silva
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/11003
Resumo: Neste trabalho foram desenvolvidas, caracterizadas e avaliadas em relação a viabilidade, partículas carreadoras de leveduras, obtidas através da encapsulação pelo método de gelificação iônica externa e interna, seguida de secagem. Para isso, a execução do trabalho foi dividida em duas partes. Na primeira etapa foi realizada a comparação de duas técnicas de encapsulação, gelificação iônica externa e interna, como protetoras de células de Saccharomyces cerevisiae, seguidas de secagem em estufa. Nesta etapa foram realizadas cinéticas de secagem, e os dados experimentais foram ajustados a modelos matemáticos. Foi calculada a eficiência da encapsulação e da secagem, e as partículas foram analisadas em relação ao teor de umidade, a higroscopicidade, atividade de água e morfologia. Apesar de ambas as técnicas apresentarem similar eficiência de encapsulação, a gelificação iônica interna apresentou óleo residual na superfície das partículas e uma menor eficiência de secagem quando comparada a gelificação iônica externa. Assim, esta última foi selecionada para a segunda parte do trabalho, na qual foi realizada a encapsulação da cepa Saccharomyces boulardii por gelificação iônica externa. As partículas obtidas foram secas em quatro temperaturas diferentes (30, 40, 50 e 60 °C), avaliando a cinética de secagem, a eficiência de encapsulação e de secagem, a viabilidade das leveduras antes e depois do processo e a umidade e a higroscopicidade. Foi avaliado também o recobrimento das partículas com quitosana, que, em seguida, foram secas na temperatura que apresentou maior eficiência. A caracterização foi realizada quanto a umidade, higroscopicidade, atividade de água, morfologia, eficiência de encapsulação e por espectroscopia de infravermelhos. Além disso, foram realizadas isotermas de sorção, e o estudo da estabilidade durante o armazenamento e a resistência, quando submetidas a simulação gastrointestinal in vitro. A temperatura de secagem selecionada foi a de 40 °C, por apresentar a maior taxa de sobrevivência da levedura S. boulardii. As partículas recobertas com quitosana apresentaram uma maior resistência aos fluidos do trato gastrointestinal, e ainda, maior proteção durante o armazenamento em todas as temperaturas analisadas. O desenvolvimento de partículas carreadoras de leveduras a partir da utilização de técnicas de encapsulação, gelificação iônica externa e interna, propicia o aumento da viabilidade deste micro-organismo.
id UFRRJ-1_0166ce3b283e0cc94404b52f267fc41e
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/11003
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Santos, Matheus Augusto SilvaMachado, Mariana Teixeira da Costa101.771.037-60http://lattes.cnpq.br/0032469366203941Machado, Mariana Teixeira da CostaRojas, Edwin Elard GarciaMichelon, Mariano114.330.096-33http://lattes.cnpq.br/45690785470394452023-12-22T01:45:24Z2023-12-22T01:45:24Z2019-02-15SANTOS, Matheus Augusto Silva. Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica. 2019. 85 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos). Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.https://rima.ufrrj.br/jspui/handle/20.500.14407/11003Neste trabalho foram desenvolvidas, caracterizadas e avaliadas em relação a viabilidade, partículas carreadoras de leveduras, obtidas através da encapsulação pelo método de gelificação iônica externa e interna, seguida de secagem. Para isso, a execução do trabalho foi dividida em duas partes. Na primeira etapa foi realizada a comparação de duas técnicas de encapsulação, gelificação iônica externa e interna, como protetoras de células de Saccharomyces cerevisiae, seguidas de secagem em estufa. Nesta etapa foram realizadas cinéticas de secagem, e os dados experimentais foram ajustados a modelos matemáticos. Foi calculada a eficiência da encapsulação e da secagem, e as partículas foram analisadas em relação ao teor de umidade, a higroscopicidade, atividade de água e morfologia. Apesar de ambas as técnicas apresentarem similar eficiência de encapsulação, a gelificação iônica interna apresentou óleo residual na superfície das partículas e uma menor eficiência de secagem quando comparada a gelificação iônica externa. Assim, esta última foi selecionada para a segunda parte do trabalho, na qual foi realizada a encapsulação da cepa Saccharomyces boulardii por gelificação iônica externa. As partículas obtidas foram secas em quatro temperaturas diferentes (30, 40, 50 e 60 °C), avaliando a cinética de secagem, a eficiência de encapsulação e de secagem, a viabilidade das leveduras antes e depois do processo e a umidade e a higroscopicidade. Foi avaliado também o recobrimento das partículas com quitosana, que, em seguida, foram secas na temperatura que apresentou maior eficiência. A caracterização foi realizada quanto a umidade, higroscopicidade, atividade de água, morfologia, eficiência de encapsulação e por espectroscopia de infravermelhos. Além disso, foram realizadas isotermas de sorção, e o estudo da estabilidade durante o armazenamento e a resistência, quando submetidas a simulação gastrointestinal in vitro. A temperatura de secagem selecionada foi a de 40 °C, por apresentar a maior taxa de sobrevivência da levedura S. boulardii. As partículas recobertas com quitosana apresentaram uma maior resistência aos fluidos do trato gastrointestinal, e ainda, maior proteção durante o armazenamento em todas as temperaturas analisadas. O desenvolvimento de partículas carreadoras de leveduras a partir da utilização de técnicas de encapsulação, gelificação iônica externa e interna, propicia o aumento da viabilidade deste micro-organismo.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorIn this work, yeast carrier particles, obtained through encapsulation by the external and internal ionic gelation method, were developed, characterized and evaluated in relation to viability, followed by drying. For this, the research was divided into two parts. In the first step, two encapsulation techniques, external and internal ionic gelation, were carried out as Saccharomyces cerevisiae cell protectors, followed by oven drying. At this stage, drying kinetics were performed, and the experimental data were fitted to mathematical models. The encapsulation and drying efficiency was calculated, and the particles were analyzed for moisture content, hygroscopicity, water activity and morphology. Although both techniques presented similar encapsulation efficiency, internal ionic gelation had residual oil on the surface of the particles and a lower drying efficiency when compared to external ionic gelation. Thus, the latter was selected for the second part of the work, in which the encapsulation of Saccharomyces boulardii strain was carried out by external ionic gelation. The obtained particles were dried at four different temperatures (30, 40, 50 and 60 °C), evaluating drying kinetics, encapsulation and drying efficiency, yeast viability before and after the process and moisture and hygroscopicity It was also evaluated the coating of the particles with chitosan, which were then dried at the temperature that showed the highest efficiency. The characterization was carried out regarding moisture, hygroscopicity, water activity, morphology, encapsulation efficiency and infrared spectroscopy. In addition, sorption isotherms were performed, and the study of storage stability and resistance, when submitted to gastrointestinal simulation in vitro. The selected drying temperature was 40 °C, as it had the highest survival rate of S. boulardii yeast. The particles coated with chitosan presented a greater resistance to the fluids of the gastrointestinal tract, and also, greater protection during the storage in all the temperatures analyzed. The development of yeast-bearing particles from the use of encapsulation techniques, external and internal ionic gelation, enhances the viability of this microorganism.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciência e Tecnologia de AlimentosUFRRJBrasilInstituto de Tecnologiamicroencapsulaçãogelificação iônicaSaccharomyces cerevisiaeSaccharomyces boulardiimicroencapsulationionic gelationSaccharomyces cerevisiaeSaccharomyces boulardiiCiência e Tecnologia de AlimentosProdução, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.Production, characterization and viability of yeast carrier particles using ionic gelation.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisARSLAN-TONTUL, S.; ERBAS, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, v. 81, p. 160-169, 2017. ISSN 0023-6438. ARSLAN, S.; ERBAS, M.; TONTUL, I.; TOPUZ, A. Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWTFood Science and Technology, v. 63, n. 1, p. 685-690, 2015. ISSN 0023-6438. CAO, H.; YE, H.; LI, C.; ZHENG, L.-L.; LI, Y.; OUYANG, Q.-F. Effect of microencapsulated cell preparation technology and conditions on the catalytic performance of Penicillium purpurogenum Li-3 strain cells. Process Biochemistry, v. 49, n. 5, p. 791-796, 2014. ISSN 1359-5113. CHEN, H.-Y.; LI, X.-Y.; LIU, B.-J.; MENG, X.-H. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journal of Functional Foods, v. 29, p. 248-255, 2017. ISSN 1756-4646. DUONGTHINGOC, D.; GEORGE, P.; KATOPO, L.; GORCZYCA, E.; KASAPIS, S. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii. Food chemistry, v. 141, n. 3, p. 1782-1788, 2013. ISSN 0308-8146. GAONKAR, A. G.; VASISHT, N.; KHARE, A. R.; SOBEL, R. Microencapsulation in the food industry: a practical implementation guide. USA: Elsevier, 2014. ISBN 0124047351. GARTI, N.; MCCLEMENTS, D. J. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Cambridge: Elsevier, 2012. ISBN 0857095900. HOLKEM, A. T.; RADDATZ, G. C.; BARIN, J. S.; FLORES, É. M. M.; MULLER, E. I.; CODEVILLA, C. F.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, v. 76, p. 216-221, 2017. ISSN 0023-6438. HOSSAIN, M. I.; SADEKUZZAMAN, M.; HA, S.-D. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Research International, 2017. ISSN 0963-9969. LEONG, J.-Y.; LAM, W.-H.; HO, K.-W.; VOO, W.-P.; LEE, M. F.-X.; LIM, H.-P.; LIM, S.- L.; TEY, B.-T.; PONCELET, D.; CHAN, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, v. 24, p. 44-60, 2016. ISSN 1674-2001. MARTÍN, M. J.; LARA-VILLOSLADA, F.; RUIZ, M. A.; MORALES, M. E. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, v. 27, p. 15-25, 2015. ISSN 1466-8564. 17 RATHORE, S.; DESAI, P. M.; LIEW, C. V.; CHAN, L. W.; HENG, P. W. S. Microencapsulation of microbial cells. Journal of Food Engineering, v. 116, n. 2, p. 369-381, 2013. ISSN 0260-8774. SCHELL, D.; BEERMANN, C. Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food research international, v. 62, p. 308-314, 2014. ISSN 0963-9969. SHORI, A. B. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI Journal of Biosciences, v. 24, n. 1, p. 1-5, 2017. ISSN 1978-3019. SIMÓ, G.; FERNÁNDEZ‐FERNÁNDEZ, E.; VILA‐CRESPO, J.; RUIPÉREZ, V.; RODRÍGUEZ‐NOGALES, J. M. Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydrate Polymers, v. 170, p. 1-14, 2017. ISSN 0144- 8617. SIRESWAR, S.; DEY, G.; SREESOUNDARYA, T. K.; SARKAR, D. Design of probioticfortified food matrices influence their antipathogenic potential. Food Bioscience, 2017. ISSN 2212-4292. SULTANA, K.; GODWARD, G.; REYNOLDS, N.; ARUMUGASWAMY, R.; PEIRIS, P.; KAILASAPATHY, K. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International journal of food microbiology, v. 62, n. 1, p. 47-55, 2000. ISSN 0168-1605. ZHANG, Y.; LI, L.; GUO, C.; MU, D.; FENG, B.; ZUO, X.; LI, Y. Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC gastroenterology, v. 16, n. 1, p. 62, 2016. ISSN 1471-230X. ANSARI, F.; POURJAFAR, H.; JODAT, V.; SAHEBI, J.; ATAEI, A. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express, v. 7, n. 1, p. 144, 2017. ISSN 2191-0855. ARSLAN-TONTUL, S.; ERBAS, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, v. 81, p. 160-169, 2017. ISSN 0023-6438. ARSLAN, S.; DURAK, A. N.; ERBAS, M.; TANRIVERDI, E.; GULCAN, U. Determination of microbiological and chemical properties of probiotic boza and its consumer acceptability. Journal of the American College of Nutrition, v. 34, n. 1, p. 56-64, 2015. ISSN 0731-5724. ARSLAN, S.; ERBAS, M.; TONTUL, I.; TOPUZ, A. Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWTFood Science and Technology, v. 63, n. 1, p. 685-690, 2015. ISSN 0023-6438. BURGAIN, J.; GAIANI, C.; LINDER, M.; SCHER, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, v. 104, n. 4, p. 467-483, 2011. ISSN 0260-8774. CHAN, L.; LEE, H.; HENG, P. Production of alginate microspheres by internal gelation using an emulsification method. International journal of pharmaceutics, v. 242, n. 1, p. 259-262, 2002. ISSN 0378-5173. CHÁVARRI, M.; MARAÑÓN, I.; ARES, R.; IBÁÑEZ, F. C.; MARZO, F.; DEL CARMEN VILLARÁN, M. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International journal of food microbiology, v. 142, n. 1, p. 185-189, 2010. ISSN 0168-1605. CHEN, H.-Y.; LI, X.-Y.; LIU, B.-J.; MENG, X.-H. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journal of Functional Foods, v. 29, p. 248-255, 2017. ISSN 1756-4646. CHUN, H.; KIM, C. H.; CHO, Y. H. Microencapsulation of Lactobacillus plantarum DKL 109 using external ionic gelation method. Korean Journal for Food Science of Animal Resources, v. 34, n. 5, p. 692-699, 2014. CINDORUK, M.; ERKAN, G.; KARAKAN, T.; DURSUN, A.; UNAL, S. Efficacy and Safety of Saccharomyces boulardii in the 14‐day Triple Anti‐Helicobacter pylori Therapy: A Prospective Randomized Placebo‐Controlled Double‐Blind Study. Helicobacter, v. 12, n. 4, p. 309-316, 2007. ISSN 1523-5378. COGHETTO, C. C.; FLORES, S. H.; BRINQUES, G. B.; ZÁCHIA AYUB, M. A. Viability and alternative uses of a dried powder, microencapsulated Lactobacillus plantarum without the use of cold chain or dairy products. LWT - Food Science and Technology, v. 71, p. 54-59, 2016. 31 COOK, M. T.; TZORTZIS, G.; CHARALAMPOPOULOS, D.; KHUTORYANSKIY, V. V. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, v. 162, n. 1, p. 56-67, 2012. DALIRI, E. B.-M.; LEE, B. H. New perspectives on probiotics in health and disease. Food Science and Human Wellness, v. 4, n. 2, p. 56-65, 2015. ISSN 2213-4530. DATTA, S.; TIMSON, D. J.; ANNAPURE, U. S. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. Journal of the Science of Food and Agriculture, v. 97, n. 9, p. 3039-3049, 2017. ISSN 1097-0010. DE LA CRUZ-GAVIA, A.; PÉREZ-ALONSO, C.; BARRERA-DÍAZ, C. E.; ALVAREZRAMÍREZ, J.; CARRILLO-NAVAS, H.; GUADARRAMA-LEZAMA, A. Y. Survival of Saccharomyces cerevisiae microencapsulated with complex coacervate after freezing process. Food Hydrocolloids, v. 82, p. 45-52, 2018. ISSN 0268-005X. DESAI, K. G. H.; JIN PARK, H. Recent developments in microencapsulation of food ingredients. Drying Technology, v. 23, n. 7, p. 1361-1394, 2005. ISSN 0737-3937. DIANAWATI, D.; MISHRA, V.; SHAH, N. P. Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review. Critical Reviews in Food Science and Nutrition, v. 56, n. 10, p. 1685-1716, 2016. DUONGTHINGOC, D.; GEORGE, P.; GORCZYCA, E.; KASAPIS, S. Studies on the viability of Saccharomyces boulardii within microcapsules in relation to the thermomechanical properties of whey protein. Food Hydrocolloids, v. 42, p. 232-238, 2014. ISSN 0268-005X. DUONGTHINGOC, D.; GEORGE, P.; KATOPO, L.; GORCZYCA, E.; KASAPIS, S. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii. Food Chemistry, v. 141, n. 3, p. 1782-1788, 2013. ISSN 0308-8146. F. GIBBS, S. K., INTEAZ ALLI, CATHERINE N. MULLIGAN, BERNARD. Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition, v. 50, n. 3, p. 213-224, 1999. ISSN 0963-7486. FLOCH, M. H.; RINGEL, Y.; WALKER, W. A. The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis. Academic Press, 2016. ISBN 0128040629. FRATIANNI, F.; CARDINALE, F.; RUSSO, I.; IULIANO, C.; TREMONTE, P.; COPPOLA, R.; NAZZARO, F. Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, v. 31, n. 3, p. 299-305, 2014. ISSN 0265-2048. FRITZEN-FREIRE, C. B.; PRUDÊNCIO, E. S.; AMBONI, R. D.; PINTO, S. S.; NEGRÃOMURAKAMI, A. N.; MURAKAMI, F. S. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, v. 45, n. 1, p. 306-312, 2012. ISSN 0963-9969. 32 GALLO, M.; BEVILACQUA, A.; SPERANZA, B.; SINIGAGLIA, M.; CORBO, M. R. Alginate beads and apple pieces as carriers for Saccharomyces cerevisiae var. boulardii, as representative of yeast functional starter cultures. International Journal of Food Science and Technology, v. 49, n. 9, p. 2092-2100, 2014. GANDOMI, H.; ABBASZADEH, S.; MISAGHI, A.; BOKAIE, S.; NOORI, N. Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT-Food Science and Technology, v. 69, p. 365-371, 2016. ISSN 0023-6438. GAONKAR, A. G.; VASISHT, N.; KHARE, A. R.; SOBEL, R. Microencapsulation in the food industry: a practical implementation guide. USA: Elsevier, 2014. ISBN 0124047351. GARTI, N.; MCCLEMENTS, D. J. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Cambridge: Elsevier, 2012. ISBN 0857095900. GHORBANI-CHOBOGHLO, H.; ZAHRAEI-SALEHI, T.; ASHRAFI-HELAN, J.; YAHYARAEYAT, R.; POURJAFAR, H.; NIKAEIN, D.; BALAL, A.; KHOSRAVI, A. R. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions. Iranian Journal of Microbiology, v. 7, n. 6, p. 337-341, 2015. GIL-RODRÍGUEZ, A. M.; CARRASCOSA, A. V.; REQUENA, T. Yeasts in foods and beverages: In vitro characterisation of probiotic traits. LWT-Food Science and Technology, v. 64, n. 2, p. 1156-1162, 2015. ISSN 0023-6438. GRAFF, S.; HUSSAIN, S.; CHAUMEIL, J.-C.; CHARRUEAU, C. Increased intestinal delivery of viable Saccharomyces boulardii by encapsulation in microspheres. Pharmaceutical Research, v. 25, n. 6, p. 1290-1296, 2008. ISSN 0724-8741. HALIM, M.; MUSTAFA, N. A. M.; OTHMAN, M.; WASOH, H.; KAPRI, M. R.; ARIFF, A. B. Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat. LWT-Food Science and Technology, v. 81, p. 210-216, 2017. ISSN 0023-6438. HAYES, S. R.; VARGAS, A. J. Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing, v. 12, n. 6, p. 463-466, 2016. HÉBRARD, G.; HOFFART, V.; BEYSSAC, E.; CARDOT, J.-M.; ALRIC, M.; SUBIRADE, M. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. Journal of Microencapsulation, v. 27, n. 4, p. 292-302, 2010. ISSN 0265- 2048. HOLKEM, A. T.; RADDATZ, G. C.; BARIN, J. S.; FLORES, É. M. M.; MULLER, E. I.; CODEVILLA, C. F.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, v. 76, p. 216-221, 2017. ISSN 0023-6438. HOLKEM, A. T.; RADDATZ, G. C.; NUNES, G. L.; CICHOSKI, A. J.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Development and characterization of alginate 33 microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT-Food Science and Technology, v. 71, p. 302-308, 2016. ISSN 0023-6438. KARAOLIS, C.; BOTSARIS, G.; PANTELIDES, I.; TSALTAS, D. Potential application of Saccharomyces boulardii as a probiotic in goat's yoghurt: survival and organoleptic effects. International Journal of Food Science & Technology, v. 48, n. 7, p. 1445-1452, 2013. ISSN 1365-2621. LEONG, J.-Y.; LAM, W.-H.; HO, K.-W.; VOO, W.-P.; LEE, M. F.-X.; LIM, H.-P.; LIM, S.- L.; TEY, B.-T.; PONCELET, D.; CHAN, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, v. 24, p. 44-60, 2016. ISSN 1674-2001. MANSOUR-GHANAEI, F.; DEHBASHI, N.; YAZDANPARAST, K.; SHAFAGHI, A. Efficacy of Saccharomyces boulardii with antibiotics in acute amoebiasis. World Journal of Gastroenterology: WJG, v. 9, n. 8, p. 1832, 2003. MCCONNELL, E. L.; FADDA, H. M.; BASIT, A. W. Gut instincts: explorations in intestinal physiology and drug delivery. International Journal of Pharmaceutics, v. 364, n. 2, p. 213- 226, 2008. ISSN 0378-5173. MCFARLAND, L. V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World Journal of Gastroenterology: WJG, v. 16, n. 18, p. 2202, 2010. MCFARLAND, L. V.; BERNASCONI, P. Saccharomyces boulardii'. A Review of an Innovative Biotherapeutic Agent. Microbial Ecology in Health and Disease, v. 6, n. 4, p. 157- 171, 1993. MCMASTER, L.; KOKOTT, S.; REID, S.; ABRATT, V. Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140. International Journal of Food Microbiology, v. 102, n. 2, p. 231-237, 2005. ISSN 0168-1605. MØRCH, Ý. A.; DONATI, I.; STRAND, B. L.; SKJÅK-BRÆK, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, v. 7, n. 5, p. 1471-1480, 2006. ISSN 1525- 7797. POLONI, V.; SALVATO, L.; PEREYRA, C.; OLIVEIRA, A.; ROSA, C.; CAVAGLIERI, L.; KELLER, K. M. Bakery by-products based feeds borne-Saccharomyces cerevisiae strains with probiotic and antimycotoxin effects plus antibiotic resistance properties for use in animal production. Food and Chemical Toxicology, v. 107, p. 630-636, 2017. ISSN 0278-6915. PONCELET, D.; LENCKI, R.; BEAULIEU, C.; HALLE, J.; NEUFELD, R.; FOURNIER, A. Production of alginate beads by emulsification/internal gelation. I. Methodology. Applied Microbiology and Biotechnology, v. 38, n. 1, p. 39-45, 1992. ISSN 0175-7598. PSOMAS, E.; FLETOURIS, D.; LITOPOULOU-TZANETAKI, E.; TZANETAKIS, N. Assimilation of cholesterol by yeast strains isolated from infant feces and Feta cheese. Journal of Dairy Science, v. 86, n. 11, p. 3416-3422, 2003. ISSN 0022-0302. 34 RATHORE, S.; DESAI, P. M.; LIEW, C. V.; CHAN, L. W.; HENG, P. W. S. Microencapsulation of microbial cells. Journal of Food Engineering, v. 116, n. 2, p. 369-381, 2013. ISSN 0260-8774. SÁNCHEZ, M. T.; RUIZ, M. A.; LASSERROT, A.; HORMIGO, M.; MORALES, M. E. An improved ionic gelation method to encapsulate Lactobacillus spp. bacteria: Protection, survival and stability study. Food Hydrocolloids, v. 69, p. 67-75, 2017. ISSN 0268-005X. SCHELL, D.; BEERMANN, C. Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Research International, v. 62, p. 308-314, 2014. ISSN 0963-9969. SEMYONOV, D.; RAMON, O.; KOVACS, A.; FRIEDLANDER, L.; SHIMONI, E. Airsuspension fluidized-bed microencapsulation of probiotics. Drying Technology, v. 30, n. 16, p. 1918-1930, 2012. ISSN 0737-3937. SHAHIDI, F.; HAN, X. Q. Encapsulation of food ingredients. Critical Reviews in Food Science & Nutrition, v. 33, n. 6, p. 501-547, 1993. ISSN 1040-8398. SHARIF, M. R.; KASHANI, H. H.; ARDAKANI, A. T.; KHEIRKHAH, D.; TABATABAEI, F.; SHARIF, A. The Effect of a Yeast Probiotic on Acute Diarrhea in Children. Probiotics and Antimicrobial Proteins, v. 8, n. 4, p. 211-214, 2016. SHORI, A. B. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI Journal of Biosciences, v. 24, n. 1, p. 1-5, 2017. ISSN 1978-3019. SONG, H.; YU, W.; LIU, X.; MA, X. Improved probiotic viability in stress environments with post-culture of alginate–chitosan microencapsulated low density cells. Carbohydrate Polymers, v. 108, p. 10-16, 2014. ISSN 0144-8617. SULTANA, K.; GODWARD, G.; REYNOLDS, N.; ARUMUGASWAMY, R.; PEIRIS, P.; KAILASAPATHY, K. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, v. 62, n. 1, p. 47-55, 2000. ISSN 0168-1605. SUVARNA, S.; DSOUZA, J.; RAGAVAN, M. L.; DAS, N. Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Science and Biotechnology, v. 27, n. 3, p. 745-753, 2018. ISSN 1226- 7708. SZAJEWSKA, H.; SKORKA, A.; DYLAG, M. Meta‐analysis: Saccharomyces boulardii for treating acute diarrhoea in children. Alimentary Pharmacology & Therapeutics, v. 25, n. 3, p. 257-264, 2007. ISSN 1365-2036. TAKEI, T.; IKEDA, K.; IJIMA, H.; KAWAKAMI, K.; YOSHIDA, M.; HATATE, Y. Preparation of polymeric microcapsules enclosing microbial cells by radical suspension polymerization via water-in-oil-in-water emulsion. Polymer Bulletin, v. 65, n. 3, p. 283-291, 2010. ISSN 0170-0839. 35 THOMAS, M. B.; VAIDYANATHAN, M.; RADHAKRISHNAN, K.; RAICHUR, A. M. Enhanced viability of probiotic Saccharomyces boulardii encapsulated by layer-by-layer approach in pH responsive chitosan–dextran sulfate polyelectrolytes. Journal of Food Engineering, v. 136, p. 1-8, 2014. ISSN 0260-8774. TRABELSI, I.; BEJAR, W.; AYADI, D.; CHOUAYEKH, H.; KAMMOUN, R.; BEJAR, S.; BEN SALAH, R. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. International Journal of Biological Macromolecules, v. 61, n. Supplement C, p. 36-42, 2013. ISSN 0141-8130. TRIPATHI, M. K.; GIRI, S. K. Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, v. 9, p. 225-241, 2014. ISSN 1756-4646. ZHANG, Y.; LI, L.; GUO, C.; MU, D.; FENG, B.; ZUO, X.; LI, Y. Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC Gastroenterology, v. 16, n. 1, p. 62, 2016. ISSN 1471-230X. ZHAO, Q.; MUTUKUMIRA, A.; LEE, S. J.; MADDOX, I.; SHU, Q. Functional properties of free and encapsulated Lactobacillus reuteri DPC16 during and after passage through a simulated gastrointestinal tract. World Journal of Microbiology and Biotechnology, v. 28, n. 1, p. 61-70, 2012. ISSN 0959-3993. ZHAO, R.; SUN, J.; TORLEY, P.; WANG, D.; NIU, S. Measurement of particle diameter of Lactobacillus acidophilus microcapsule by spray drying and analysis on its microstructure. World Journal of Microbiology and Biotechnology, v. 24, n. 8, p. 1349-1354, 2008. AOAC. Official methods of analysis of the Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists., 1970. ARSLAN-TONTUL, S.; ERBAS, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, v. 81, p. 160-169, 2017. ISSN 0023-6438. ARSLAN, S.; ERBAS, M.; TONTUL, I.; TOPUZ, A. Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWTFood Science and Technology, v. 63, n. 1, p. 685-690, 2015. ISSN 0023-6438. BEGOT, C.; DESNIER, I.; DAUDIN, J. D.; LABADIE, J. C.; LEBERT, A. Recommendations for calculating growth parameters by optical density measurements. Journal of Microbiological Methods, v. 25, n. 3, p. 225-232, 1996. ISSN 0167-7012. BHANDARI, B. R.; BANSAL, N.; ZHANG, M.; SCHUCK, P. Handbook of food powders: processes and properties. Elsevier, 2013. ISBN 0857098675. BLIGH, E. G.; DYER, W. J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, v. 37, n. 8, p. 911-917, 1959. ISSN 0576-5544. CAI, Y.; CORKE, H. Production and Properties of Spray‐dried Amaranthus Betacyanin Pigments. Journal of Food Science, v. 65, n. 7, p. 1248-1252, 2000. ISSN 1750-3841. CARLESSO, V. D. O.; BERBERT, P. A.; SILVA, R. F. D.; DETMANN, E. Avaliação de modelos de secagem em camada fina de sementes de maracujá amarelo. Revista Brasileira de Sementes, 2007. ISSN 0101-3122. CHAMPAGNE, C. P.; MONDOU, F.; RAYMOND, Y.; ROY, D. Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Research International, v. 29, n. 5-6, p. 555-562, 1996. ISSN 0963-9969. DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Química de Alimentos de Fennema. Artmed Editora, 2009. ISBN 8536323345. FAVARIN, L.; LAUREANO-MELO, R.; LUCHESE, R. H. Survival of free and microencapsulated Bifidobacterium: effect of honey addition. Journal of Microencapsulation, v. 32, n. 4, p. 329-335, 2015. ISSN 0265-2048. FRATIANNI, F.; CARDINALE, F.; RUSSO, I.; IULIANO, C.; TREMONTE, P.; COPPOLA, R.; NAZZARO, F. Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, v. 31, n. 3, p. 299-305, 2014. ISSN 0265-2048. GAONKAR, A. G.; VASISHT, N.; KHARE, A. R.; SOBEL, R. Microencapsulation in the Food Industry: a Practical Implementation Guide. USA: Elsevier, 2014. ISBN 0124047351. 50 GARTI, N.; MCCLEMENTS, D. J. Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Cambridge: Elsevier, 2012. ISBN 0857095900. GUIMARÃES, R. R.; VENDRAMINI, A. L. D. A.; SANTOS, A. C. D.; LEITE, S. G. F.; MIGUEL, M. A. L. Development of probiotic beads similar to fish eggs. Journal of Functional Foods, v. 5, n. 2, p. 968-973, 2013. ISSN 1756-4646. HÉBRARD, G.; HOFFART, V.; BEYSSAC, E.; CARDOT, J.-M.; ALRIC, M.; SUBIRADE, M. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. Journal of Microencapsulation, v. 27, n. 4, p. 292-302, 2010. ISSN 0265- 2048. HOLKEM, A. T.; RADDATZ, G. C.; BARIN, J. S.; FLORES, É. M. M.; MULLER, E. I.; CODEVILLA, C. F.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, v. 76, p. 216-221, 2017. ISSN 0023-6438. HOLKEM, A. T.; RADDATZ, G. C.; NUNES, G. L.; CICHOSKI, A. J.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT-Food Science and Technology, v. 71, p. 302-308, 2016. ISSN 0023-6438. LEONG, J.-Y.; LAM, W.-H.; HO, K.-W.; VOO, W.-P.; LEE, M. F.-X.; LIM, H.-P.; LIM, S.- L.; TEY, B.-T.; PONCELET, D.; CHAN, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, v. 24, p. 44-60, 2016. ISSN 1674-2001. MØRCH, Ý. A.; DONATI, I.; STRAND, B. L.; SKJÅK-BRÆK, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, v. 7, n. 5, p. 1471-1480, 2006. ISSN 1525- 7797. PAGE, G. E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers. 1949. PONCELET, D.; LENCKI, R.; BEAULIEU, C.; HALLE, J.; NEUFELD, R.; FOURNIER, A. Production of alginate beads by emulsification/internal gelation. I. Methodology. Applied Microbiology and Biotechnology, v. 38, n. 1, p. 39-45, 1992. ISSN 0175-7598. RATHORE, S.; DESAI, P. M.; LIEW, C. V.; CHAN, L. W.; HENG, P. W. S. Microencapsulation of microbial cells. Journal of Food Engineering, v. 116, n. 2, p. 369-381, 2013. ISSN 0260-8774. SHEU, T.; MARSHALL, R. Microentrapment of lactobacilli in calcium alginate gels. Journal of Food Science, v. 58, n. 3, p. 557-561, 1993. ISSN 1750-3841. SKJÅK-BRÆK, G.; GRASDALEN, H.; SMIDSRØD, O. Inhomogeneous polysaccharide ionic gels. Carbohydrate Polymers, v. 10, n. 1, p. 31-54, 1989. ISSN 0144-8617. 51 SONG, H.; YU, W.; LIU, X.; MA, X. Improved probiotic viability in stress environments with post-culture of alginate–chitosan microencapsulated low density cells. Carbohydrate Polymers, v. 108, p. 10-16, 2014. ISSN 0144-8617. TAKEI, T.; IKEDA, K.; IJIMA, H.; KAWAKAMI, K.; YOSHIDA, M.; HATATE, Y. Preparation of polymeric microcapsules enclosing microbial cells by radical suspension polymerization via water-in-oil-in-water emulsion. Polymer Bulletin, v. 65, n. 3, p. 283-291, 2010. ISSN 0170-0839. AKPINAR, E.; MIDILLI, A.; BICER, Y. Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Conversion and Management, v. 44, n. 10, p. 1689-1705, 2003. ISSN 0196-8904. ALBADRAN, H. A., CHATZIFRAGKOU, A., KHUTORYANSKIY, V. V., CHARALAMPOPOULOS, D. Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Research International, v. 74, p. 208-216, 2015. AL-MUHTASEB, A.; MCMINN, W.; MAGEE, T. Moisture sorption isotherm characteristics of food products: a review. Food and Bioproducts Processing, v. 80, n. 2, p. 118-128, 2002. ISSN 0960-3085. ANSARI, F.; POURJAFAR, H.; JODAT, V.; SAHEBI, J.; ATAEI, A. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express, v. 7, n. 1, p. 144, 2017. ISSN 2191-0855. AOAC. Official methods of analysis of the Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists., 1970. ARSLAN-TONTUL, S.; ERBAS, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, v. 81, p. 160-169, 2017. ISSN 0023-6438. BEGOT, C.; DESNIER, I.; DAUDIN, J. D.; LABADIE, J. C.; LEBERT, A. Recommendations for calculating growth parameters by optical density measurements. Journal of Microbiological Methods, v. 25, n. 3, p. 225-232, 1996. ISSN 0167-7012. BHANDARI, B. R.; BANSAL, N.; ZHANG, M.; SCHUCK, P. Handbook of Food Powders: Processes and Properties. Elsevier, 2013. ISBN 0857098675. BROOKER, D. B.; BAKKER-ARKEMA, F. W.; HALL, C. W. Drying and Storage of Grains and Oilseeds. Springer Science & Business Media, 1992. ISBN 0442205155. BRUNAUER, S.; EMMETT, P. H.; TELLER, E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Cociety, v. 60, n. 2, p. 309-319, 1938. ISSN 0002-7863. BURGAIN, J.; GAIANI, C.; LINDER, M.; SCHER, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, v. 104, n. 4, p. 467-483, 2011. ISSN 0260-8774. CAI, Y.; CORKE, H. Production and Properties of Spray‐dried Amaranthus Betacyanin Pigments. Journal of Food Science, v. 65, n. 7, p. 1248-1252, 2000. ISSN 1750-3841. CARLESSO, V. D. O.; BERBERT, P. A.; SILVA, R. F. D.; DETMANN, E. Avaliação de modelos de secagem em camada fina de sementes de maracujá amarelo. Revista Brasileira de Sementes, 2007. ISSN 0101-3122. 79 CHAMPAGNE, C. P.; MONDOU, F.; RAYMOND, Y.; ROY, D. Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Research International, v. 29, n. 5-6, p. 555-562, 1996. ISSN 0963-9969. DE FARIA, R. Q.; TEIXEIRA, I. R.; DEVILLA, I. A.; ASCHERI, D. P.; RESENDE, O. Cinética de secagem de sementes de crambe. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 16, n. 5, p. 573-584, 2012. ISSN 1415-4366. DE LA CRUZ-GAVIA, A.; PÉREZ-ALONSO, C.; BARRERA-DÍAZ, C. E.; ALVAREZRAMÍREZ, J.; CARRILLO-NAVAS, H.; GUADARRAMA-LEZAMA, A. Y. Survival of Saccharomyces cerevisiae microencapsulated with complex coacervate after freezing process. Food Hydrocolloids, v. 82, p. 45-52, 2018. ISSN 0268-005X. DIANAWATI, D.; MISHRA, V.; SHAH, N. P. Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review. Critical Reviews in Food Science and Nutrition, v. 56, n. 10, p. 1685-1716, 2016. ERATTE, D., DOWLING, K., BARROW, C. J., ADHIKARI, B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends in Food Science & Technology, v. 71, p. 121-131, 2018. FAVARIN, L.; LAUREANO-MELO, R.; LUCHESE, R. H. Survival of free and microencapsulated Bifidobacterium: effect of honey addition. Journal of Microencapsulation, v. 32, n. 4, p. 329-335, 2015. ISSN 0265-2048. FRATIANNI, F.; CARDINALE, F.; RUSSO, I.; IULIANO, C.; TREMONTE, P.; COPPOLA, R.; NAZZARO, F. Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, v. 31, n. 3, p. 299-305, 2014. ISSN 0265-2048. GALLO, M.; BEVILACQUA, A.; SPERANZA, B.; SINIGAGLIA, M.; CORBO, M. R. Alginate beads and apple pieces as carriers for Saccharomyces cerevisiae var. boulardii, as representative of yeast functional starter cultures. International Journal of Food Science and Technology, v. 49, n. 9, p. 2092-2100, 2014. GAONKAR, A. G.; VASISHT, N.; KHARE, A. R.; SOBEL, R. Microencapsulation in the Food Industry: a Practical Implementation Guide. USA: Elsevier, 2014. ISBN 0124047351. GARTI, N.; MCCLEMENTS, D. J. Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Cambridge: Elsevier, 2012. ISBN 0857095900. GUIMARÃES, R. R.; VENDRAMINI, A. L. D. A.; SANTOS, A. C. D.; LEITE, S. G. F.; MIGUEL, M. A. L. Development of probiotic beads similar to fish eggs. Journal of Functional Foods, v. 5, n. 2, p. 968-973, 2013. ISSN 1756-4646. HALIM, M., MUSTAFA, N. A. M., OTHMAN, M., WASOH, H., KAPRI, M. R., & ARIFF, A. B. Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat. LWT-Food Science and Technology, v. 81, p. 210-216, 2017. 80 HÉBRARD, G.; HOFFART, V.; BEYSSAC, E.; CARDOT, J.-M.; ALRIC, M.; SUBIRADE, M. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. Journal of Microencapsulation, v. 27, n. 4, p. 292-302, 2010. ISSN 0265- 2048. HOLKEM, A. T.; RADDATZ, G. C.; BARIN, J. S.; FLORES, É. M. M.; MULLER, E. I.; CODEVILLA, C. F.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, v. 76, p. 216-221, 2017. ISSN 0023-6438. KRASAEKOOPT, W.; BHANDARI, B.; DEETH, H. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, v. 14, n. 8, p. 737-743, 2004. ISSN 0958-6946. LABUZA, T. P.; SCHMIDL, M. K. Accelerated shelf-life testing of foods. Food Technology (USA), 1985. ISSN 0015-6639. LEONG, J.-Y.; LAM, W.-H.; HO, K.-W.; VOO, W.-P.; LEE, M. F.-X.; LIM, H.-P.; LIM, S.- L.; TEY, B.-T.; PONCELET, D.; CHAN, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, v. 24, p. 44-60, 2016. ISSN 1674-2001. LEWICKI, P. P. The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science e Technology, v. 32, n. 6, p. 553-557, 1997. ISSN 0950-5423. LIM, G.-P.; AHMAD, M. S. Development of Ca-alginate-chitosan microcapsules for encapsulation and controlled release of imidacloprid to control dengue outbreaks. Journal of Industrial and Engineering Chemistry, v. 56, p. 382-393, 2017. ISSN 1226-086X. MCFARLAND, L. V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World Journal of Gastroenterology: WJG, v. 16, n. 18, p. 2202, 2010. MCFARLAND, L. V.; BERNASCONI, P. Saccharomyces boulardii'. A Review of an Innovative Biotherapeutic Agent. Microbial Ecology in Health and Disease, v. 6, n. 4, p. 157- 171, 1993. MØRCH, Ý. A.; DONATI, I.; STRAND, B. L.; SKJÅK-BRÆK, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, v. 7, n. 5, p. 1471-1480, 2006. ISSN 1525- 7797. MORENO, JORGE ALBERTO S. ET AL. MORENO, J. A. S., MENDES, A. C., STEPHANSEN, K., ENGWER, C., GOYCOOLEA, F. M., BOISEN, A., CHRONAKIS, I. S. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydrate Polymers, v. 190, p. 240-247, 2018. PAGE, G. E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers. 1949. 81 PICOT, A.; LACROIX, C. Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, v. 14, n. 6, p. 505-515, 2004. ISSN 0958-6946. RAMOS, P. E.; CERQUEIRA, M. A.; TEIXEIRA, J. A.; VICENTE, A. A. Physiological protection of probiotic microcapsules by coatings. Critical Reviews in Food Science and Nutrition, v. 58, n. 11, p. 1864-1877, 2018. ISSN 1040-8398. RATHORE, S.; DESAI, P. M.; LIEW, C. V.; CHAN, L. W.; HENG, P. W. S. Microencapsulation of microbial cells. Journal of Food Engineering, v. 116, n. 2, p. 369-381, 2013. ISSN 0260-8774. ROSENBERG, M.; YOUNG, S. Whey proteins as microencapsulating agents. Microencapsulation of anhydrous milkfat-structure evaluation. Food Structure, v. 12, n. 1, p. 4, 1993. SANTOS, M. G.; BOZZA, F. T.; THOMAZINI, M.; FAVARO-TRINDADE, C. S. Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chemistry, v. 171, p. 32-39, 2015. ISSN 0308-8146. SHEU, T.; MARSHALL, R. Microentrapment of lactobacilli in calcium alginate gels. Journal of Food Science, v. 58, n. 3, p. 557-561, 1993. ISSN 1750-3841. SKJÅK-BRÆK, G.; GRASDALEN, H.; SMIDSRØD, O. Inhomogeneous polysaccharide ionic gels. Carbohydrate Polymers, v. 10, n. 1, p. 31-54, 1989. ISSN 0144-8617. SONG, H.; YU, W.; LIU, X.; MA, X. Improved probiotic viability in stress environments with post-culture of alginate–chitosan microencapsulated low density cells. Carbohydrate Polymers, v. 108, p. 10-16, 2014. ISSN 0144-8617. SULTANA, K.; GODWARD, G.; REYNOLDS, N.; ARUMUGASWAMY, R.; PEIRIS, P.; KAILASAPATHY, K. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, v. 62, n. 1, p. 47-55, 2000. ISSN 0168-1605. SUVARNA, S.; DSOUZA, J.; RAGAVAN, M. L.; DAS, N. Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Science and Biotechnology, v. 27, n. 3, p. 745-753, 2018. ISSN 1226- 7708. THOMAS, M. B.; VAIDYANATHAN, M.; RADHAKRISHNAN, K.; RAICHUR, A. M. Enhanced viability of probiotic Saccharomyces boulardii encapsulated by layer-by-layer approach in pH responsive chitosan–dextran sulfate polyelectrolytes. Journal of Food Engineering, v. 136, p. 1-8, 2014. ISSN 0260-8774. VAZIRI, A. S.; ALEMZADEH, I.; VOSSOUGHI, M. Improving survivability of Lactobacillus plantarum in alginate-chitosan beads reinforced by Na-tripolyphosphate dual cross-linking. LWT, v. 97, p. 440-447, 2018. ISSN 0023-6438. 82 VERRUCK, S.; SANTANA, F.; DE OLIVERA MÜLLER, C.; PRUDENCIO, E. S. Thermal and water sorption properties of Bifidobacterium BB-12 microcapsules obtained from goat's milk and prebiotics. LWT, v. 98, p. 314-321, 2018. ISSN 0023-6438. YAO, M., WU, J., LI, B., XIAO, H., MCCLEMENTS, D. J., & LI, L. Microencapsulation of Lactobacillus salivarious Li01 for enhanced storage viability and targeted delivery to gut microbiota. Food Hydrocolloids, v. 72, p. 228-236, 2017.https://tede.ufrrj.br/retrieve/67156/2019%20-%20Matheus%20Augusto%20Silva%20Santos.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5146Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-10-21T01:47:02Z No. of bitstreams: 1 2019 - Matheus Augusto Silva Santos.pdf: 2810416 bytes, checksum: a7fc7d4d095051f04c33df55e64fe24e (MD5)Made available in DSpace on 2021-10-21T01:47:02Z (GMT). No. of bitstreams: 1 2019 - Matheus Augusto Silva Santos.pdf: 2810416 bytes, checksum: a7fc7d4d095051f04c33df55e64fe24e (MD5) Previous issue date: 2019-02-15info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Matheus Augusto Silva Santos.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11003/1/2019%20-%20Matheus%20Augusto%20Silva%20Santos.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2019 - Matheus Augusto Silva Santos.pdf.txtExtracted Texttext/plain179823https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11003/2/2019%20-%20Matheus%20Augusto%20Silva%20Santos.pdf.txtc20d9e28fcbe75d95846097941d17f05MD52ORIGINAL2019 - Matheus Augusto Silva Santos.pdf2019 - Matheus Augusto Silva Santosapplication/pdf2810416https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11003/3/2019%20-%20Matheus%20Augusto%20Silva%20Santos.pdfa7fc7d4d095051f04c33df55e64fe24eMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11003/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/110032023-12-21 22:45:24.567oai:rima.ufrrj.br:20.500.14407/11003Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:45:24Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.
dc.title.alternative.eng.fl_str_mv Production, characterization and viability of yeast carrier particles using ionic gelation.
title Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.
spellingShingle Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.
Santos, Matheus Augusto Silva
microencapsulação
gelificação iônica
Saccharomyces cerevisiae
Saccharomyces boulardii
microencapsulation
ionic gelation
Saccharomyces cerevisiae
Saccharomyces boulardii
Ciência e Tecnologia de Alimentos
title_short Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.
title_full Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.
title_fullStr Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.
title_full_unstemmed Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.
title_sort Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica.
author Santos, Matheus Augusto Silva
author_facet Santos, Matheus Augusto Silva
author_role author
dc.contributor.author.fl_str_mv Santos, Matheus Augusto Silva
dc.contributor.advisor1.fl_str_mv Machado, Mariana Teixeira da Costa
dc.contributor.advisor1ID.fl_str_mv 101.771.037-60
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0032469366203941
dc.contributor.referee1.fl_str_mv Machado, Mariana Teixeira da Costa
dc.contributor.referee2.fl_str_mv Rojas, Edwin Elard Garcia
dc.contributor.referee3.fl_str_mv Michelon, Mariano
dc.contributor.authorID.fl_str_mv 114.330.096-33
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4569078547039445
contributor_str_mv Machado, Mariana Teixeira da Costa
Machado, Mariana Teixeira da Costa
Rojas, Edwin Elard Garcia
Michelon, Mariano
dc.subject.por.fl_str_mv microencapsulação
gelificação iônica
Saccharomyces cerevisiae
Saccharomyces boulardii
topic microencapsulação
gelificação iônica
Saccharomyces cerevisiae
Saccharomyces boulardii
microencapsulation
ionic gelation
Saccharomyces cerevisiae
Saccharomyces boulardii
Ciência e Tecnologia de Alimentos
dc.subject.eng.fl_str_mv microencapsulation
ionic gelation
Saccharomyces cerevisiae
Saccharomyces boulardii
dc.subject.cnpq.fl_str_mv Ciência e Tecnologia de Alimentos
description Neste trabalho foram desenvolvidas, caracterizadas e avaliadas em relação a viabilidade, partículas carreadoras de leveduras, obtidas através da encapsulação pelo método de gelificação iônica externa e interna, seguida de secagem. Para isso, a execução do trabalho foi dividida em duas partes. Na primeira etapa foi realizada a comparação de duas técnicas de encapsulação, gelificação iônica externa e interna, como protetoras de células de Saccharomyces cerevisiae, seguidas de secagem em estufa. Nesta etapa foram realizadas cinéticas de secagem, e os dados experimentais foram ajustados a modelos matemáticos. Foi calculada a eficiência da encapsulação e da secagem, e as partículas foram analisadas em relação ao teor de umidade, a higroscopicidade, atividade de água e morfologia. Apesar de ambas as técnicas apresentarem similar eficiência de encapsulação, a gelificação iônica interna apresentou óleo residual na superfície das partículas e uma menor eficiência de secagem quando comparada a gelificação iônica externa. Assim, esta última foi selecionada para a segunda parte do trabalho, na qual foi realizada a encapsulação da cepa Saccharomyces boulardii por gelificação iônica externa. As partículas obtidas foram secas em quatro temperaturas diferentes (30, 40, 50 e 60 °C), avaliando a cinética de secagem, a eficiência de encapsulação e de secagem, a viabilidade das leveduras antes e depois do processo e a umidade e a higroscopicidade. Foi avaliado também o recobrimento das partículas com quitosana, que, em seguida, foram secas na temperatura que apresentou maior eficiência. A caracterização foi realizada quanto a umidade, higroscopicidade, atividade de água, morfologia, eficiência de encapsulação e por espectroscopia de infravermelhos. Além disso, foram realizadas isotermas de sorção, e o estudo da estabilidade durante o armazenamento e a resistência, quando submetidas a simulação gastrointestinal in vitro. A temperatura de secagem selecionada foi a de 40 °C, por apresentar a maior taxa de sobrevivência da levedura S. boulardii. As partículas recobertas com quitosana apresentaram uma maior resistência aos fluidos do trato gastrointestinal, e ainda, maior proteção durante o armazenamento em todas as temperaturas analisadas. O desenvolvimento de partículas carreadoras de leveduras a partir da utilização de técnicas de encapsulação, gelificação iônica externa e interna, propicia o aumento da viabilidade deste micro-organismo.
publishDate 2019
dc.date.issued.fl_str_mv 2019-02-15
dc.date.accessioned.fl_str_mv 2023-12-22T01:45:24Z
dc.date.available.fl_str_mv 2023-12-22T01:45:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Matheus Augusto Silva. Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica. 2019. 85 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos). Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/11003
identifier_str_mv SANTOS, Matheus Augusto Silva. Produção, caracterização e viabilidade de partículas carreadoras de leveduras utilizando a gelificação iônica. 2019. 85 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos). Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/11003
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ARSLAN-TONTUL, S.; ERBAS, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, v. 81, p. 160-169, 2017. ISSN 0023-6438. ARSLAN, S.; ERBAS, M.; TONTUL, I.; TOPUZ, A. Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWTFood Science and Technology, v. 63, n. 1, p. 685-690, 2015. ISSN 0023-6438. CAO, H.; YE, H.; LI, C.; ZHENG, L.-L.; LI, Y.; OUYANG, Q.-F. Effect of microencapsulated cell preparation technology and conditions on the catalytic performance of Penicillium purpurogenum Li-3 strain cells. Process Biochemistry, v. 49, n. 5, p. 791-796, 2014. ISSN 1359-5113. CHEN, H.-Y.; LI, X.-Y.; LIU, B.-J.; MENG, X.-H. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journal of Functional Foods, v. 29, p. 248-255, 2017. ISSN 1756-4646. DUONGTHINGOC, D.; GEORGE, P.; KATOPO, L.; GORCZYCA, E.; KASAPIS, S. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii. Food chemistry, v. 141, n. 3, p. 1782-1788, 2013. ISSN 0308-8146. GAONKAR, A. G.; VASISHT, N.; KHARE, A. R.; SOBEL, R. Microencapsulation in the food industry: a practical implementation guide. USA: Elsevier, 2014. ISBN 0124047351. GARTI, N.; MCCLEMENTS, D. J. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Cambridge: Elsevier, 2012. ISBN 0857095900. HOLKEM, A. T.; RADDATZ, G. C.; BARIN, J. S.; FLORES, É. M. M.; MULLER, E. I.; CODEVILLA, C. F.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, v. 76, p. 216-221, 2017. ISSN 0023-6438. HOSSAIN, M. I.; SADEKUZZAMAN, M.; HA, S.-D. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Research International, 2017. ISSN 0963-9969. LEONG, J.-Y.; LAM, W.-H.; HO, K.-W.; VOO, W.-P.; LEE, M. F.-X.; LIM, H.-P.; LIM, S.- L.; TEY, B.-T.; PONCELET, D.; CHAN, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, v. 24, p. 44-60, 2016. ISSN 1674-2001. MARTÍN, M. J.; LARA-VILLOSLADA, F.; RUIZ, M. A.; MORALES, M. E. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, v. 27, p. 15-25, 2015. ISSN 1466-8564. 17 RATHORE, S.; DESAI, P. M.; LIEW, C. V.; CHAN, L. W.; HENG, P. W. S. Microencapsulation of microbial cells. Journal of Food Engineering, v. 116, n. 2, p. 369-381, 2013. ISSN 0260-8774. SCHELL, D.; BEERMANN, C. Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food research international, v. 62, p. 308-314, 2014. ISSN 0963-9969. SHORI, A. B. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI Journal of Biosciences, v. 24, n. 1, p. 1-5, 2017. ISSN 1978-3019. SIMÓ, G.; FERNÁNDEZ‐FERNÁNDEZ, E.; VILA‐CRESPO, J.; RUIPÉREZ, V.; RODRÍGUEZ‐NOGALES, J. M. Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydrate Polymers, v. 170, p. 1-14, 2017. ISSN 0144- 8617. SIRESWAR, S.; DEY, G.; SREESOUNDARYA, T. K.; SARKAR, D. Design of probioticfortified food matrices influence their antipathogenic potential. Food Bioscience, 2017. ISSN 2212-4292. SULTANA, K.; GODWARD, G.; REYNOLDS, N.; ARUMUGASWAMY, R.; PEIRIS, P.; KAILASAPATHY, K. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International journal of food microbiology, v. 62, n. 1, p. 47-55, 2000. ISSN 0168-1605. ZHANG, Y.; LI, L.; GUO, C.; MU, D.; FENG, B.; ZUO, X.; LI, Y. Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC gastroenterology, v. 16, n. 1, p. 62, 2016. ISSN 1471-230X. ANSARI, F.; POURJAFAR, H.; JODAT, V.; SAHEBI, J.; ATAEI, A. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express, v. 7, n. 1, p. 144, 2017. ISSN 2191-0855. ARSLAN-TONTUL, S.; ERBAS, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, v. 81, p. 160-169, 2017. ISSN 0023-6438. ARSLAN, S.; DURAK, A. N.; ERBAS, M.; TANRIVERDI, E.; GULCAN, U. Determination of microbiological and chemical properties of probiotic boza and its consumer acceptability. Journal of the American College of Nutrition, v. 34, n. 1, p. 56-64, 2015. ISSN 0731-5724. ARSLAN, S.; ERBAS, M.; TONTUL, I.; TOPUZ, A. Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWTFood Science and Technology, v. 63, n. 1, p. 685-690, 2015. ISSN 0023-6438. BURGAIN, J.; GAIANI, C.; LINDER, M.; SCHER, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, v. 104, n. 4, p. 467-483, 2011. ISSN 0260-8774. CHAN, L.; LEE, H.; HENG, P. Production of alginate microspheres by internal gelation using an emulsification method. International journal of pharmaceutics, v. 242, n. 1, p. 259-262, 2002. ISSN 0378-5173. CHÁVARRI, M.; MARAÑÓN, I.; ARES, R.; IBÁÑEZ, F. C.; MARZO, F.; DEL CARMEN VILLARÁN, M. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International journal of food microbiology, v. 142, n. 1, p. 185-189, 2010. ISSN 0168-1605. CHEN, H.-Y.; LI, X.-Y.; LIU, B.-J.; MENG, X.-H. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journal of Functional Foods, v. 29, p. 248-255, 2017. ISSN 1756-4646. CHUN, H.; KIM, C. H.; CHO, Y. H. Microencapsulation of Lactobacillus plantarum DKL 109 using external ionic gelation method. Korean Journal for Food Science of Animal Resources, v. 34, n. 5, p. 692-699, 2014. CINDORUK, M.; ERKAN, G.; KARAKAN, T.; DURSUN, A.; UNAL, S. Efficacy and Safety of Saccharomyces boulardii in the 14‐day Triple Anti‐Helicobacter pylori Therapy: A Prospective Randomized Placebo‐Controlled Double‐Blind Study. Helicobacter, v. 12, n. 4, p. 309-316, 2007. ISSN 1523-5378. COGHETTO, C. C.; FLORES, S. H.; BRINQUES, G. B.; ZÁCHIA AYUB, M. A. Viability and alternative uses of a dried powder, microencapsulated Lactobacillus plantarum without the use of cold chain or dairy products. LWT - Food Science and Technology, v. 71, p. 54-59, 2016. 31 COOK, M. T.; TZORTZIS, G.; CHARALAMPOPOULOS, D.; KHUTORYANSKIY, V. V. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, v. 162, n. 1, p. 56-67, 2012. DALIRI, E. B.-M.; LEE, B. H. New perspectives on probiotics in health and disease. Food Science and Human Wellness, v. 4, n. 2, p. 56-65, 2015. ISSN 2213-4530. DATTA, S.; TIMSON, D. J.; ANNAPURE, U. S. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. Journal of the Science of Food and Agriculture, v. 97, n. 9, p. 3039-3049, 2017. ISSN 1097-0010. DE LA CRUZ-GAVIA, A.; PÉREZ-ALONSO, C.; BARRERA-DÍAZ, C. E.; ALVAREZRAMÍREZ, J.; CARRILLO-NAVAS, H.; GUADARRAMA-LEZAMA, A. Y. Survival of Saccharomyces cerevisiae microencapsulated with complex coacervate after freezing process. Food Hydrocolloids, v. 82, p. 45-52, 2018. ISSN 0268-005X. DESAI, K. G. H.; JIN PARK, H. Recent developments in microencapsulation of food ingredients. Drying Technology, v. 23, n. 7, p. 1361-1394, 2005. ISSN 0737-3937. DIANAWATI, D.; MISHRA, V.; SHAH, N. P. Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review. Critical Reviews in Food Science and Nutrition, v. 56, n. 10, p. 1685-1716, 2016. DUONGTHINGOC, D.; GEORGE, P.; GORCZYCA, E.; KASAPIS, S. Studies on the viability of Saccharomyces boulardii within microcapsules in relation to the thermomechanical properties of whey protein. Food Hydrocolloids, v. 42, p. 232-238, 2014. ISSN 0268-005X. DUONGTHINGOC, D.; GEORGE, P.; KATOPO, L.; GORCZYCA, E.; KASAPIS, S. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii. Food Chemistry, v. 141, n. 3, p. 1782-1788, 2013. ISSN 0308-8146. F. GIBBS, S. K., INTEAZ ALLI, CATHERINE N. MULLIGAN, BERNARD. Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition, v. 50, n. 3, p. 213-224, 1999. ISSN 0963-7486. FLOCH, M. H.; RINGEL, Y.; WALKER, W. A. The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis. Academic Press, 2016. ISBN 0128040629. FRATIANNI, F.; CARDINALE, F.; RUSSO, I.; IULIANO, C.; TREMONTE, P.; COPPOLA, R.; NAZZARO, F. Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, v. 31, n. 3, p. 299-305, 2014. ISSN 0265-2048. FRITZEN-FREIRE, C. B.; PRUDÊNCIO, E. S.; AMBONI, R. D.; PINTO, S. S.; NEGRÃOMURAKAMI, A. N.; MURAKAMI, F. S. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, v. 45, n. 1, p. 306-312, 2012. ISSN 0963-9969. 32 GALLO, M.; BEVILACQUA, A.; SPERANZA, B.; SINIGAGLIA, M.; CORBO, M. R. Alginate beads and apple pieces as carriers for Saccharomyces cerevisiae var. boulardii, as representative of yeast functional starter cultures. International Journal of Food Science and Technology, v. 49, n. 9, p. 2092-2100, 2014. GANDOMI, H.; ABBASZADEH, S.; MISAGHI, A.; BOKAIE, S.; NOORI, N. Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT-Food Science and Technology, v. 69, p. 365-371, 2016. ISSN 0023-6438. GAONKAR, A. G.; VASISHT, N.; KHARE, A. R.; SOBEL, R. Microencapsulation in the food industry: a practical implementation guide. USA: Elsevier, 2014. ISBN 0124047351. GARTI, N.; MCCLEMENTS, D. J. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Cambridge: Elsevier, 2012. ISBN 0857095900. GHORBANI-CHOBOGHLO, H.; ZAHRAEI-SALEHI, T.; ASHRAFI-HELAN, J.; YAHYARAEYAT, R.; POURJAFAR, H.; NIKAEIN, D.; BALAL, A.; KHOSRAVI, A. R. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions. Iranian Journal of Microbiology, v. 7, n. 6, p. 337-341, 2015. GIL-RODRÍGUEZ, A. M.; CARRASCOSA, A. V.; REQUENA, T. Yeasts in foods and beverages: In vitro characterisation of probiotic traits. LWT-Food Science and Technology, v. 64, n. 2, p. 1156-1162, 2015. ISSN 0023-6438. GRAFF, S.; HUSSAIN, S.; CHAUMEIL, J.-C.; CHARRUEAU, C. Increased intestinal delivery of viable Saccharomyces boulardii by encapsulation in microspheres. Pharmaceutical Research, v. 25, n. 6, p. 1290-1296, 2008. ISSN 0724-8741. HALIM, M.; MUSTAFA, N. A. M.; OTHMAN, M.; WASOH, H.; KAPRI, M. R.; ARIFF, A. B. Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat. LWT-Food Science and Technology, v. 81, p. 210-216, 2017. ISSN 0023-6438. HAYES, S. R.; VARGAS, A. J. Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing, v. 12, n. 6, p. 463-466, 2016. HÉBRARD, G.; HOFFART, V.; BEYSSAC, E.; CARDOT, J.-M.; ALRIC, M.; SUBIRADE, M. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. Journal of Microencapsulation, v. 27, n. 4, p. 292-302, 2010. ISSN 0265- 2048. HOLKEM, A. T.; RADDATZ, G. C.; BARIN, J. S.; FLORES, É. M. M.; MULLER, E. I.; CODEVILLA, C. F.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, v. 76, p. 216-221, 2017. ISSN 0023-6438. HOLKEM, A. T.; RADDATZ, G. C.; NUNES, G. L.; CICHOSKI, A. J.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Development and characterization of alginate 33 microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT-Food Science and Technology, v. 71, p. 302-308, 2016. ISSN 0023-6438. KARAOLIS, C.; BOTSARIS, G.; PANTELIDES, I.; TSALTAS, D. Potential application of Saccharomyces boulardii as a probiotic in goat's yoghurt: survival and organoleptic effects. International Journal of Food Science & Technology, v. 48, n. 7, p. 1445-1452, 2013. ISSN 1365-2621. LEONG, J.-Y.; LAM, W.-H.; HO, K.-W.; VOO, W.-P.; LEE, M. F.-X.; LIM, H.-P.; LIM, S.- L.; TEY, B.-T.; PONCELET, D.; CHAN, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, v. 24, p. 44-60, 2016. ISSN 1674-2001. MANSOUR-GHANAEI, F.; DEHBASHI, N.; YAZDANPARAST, K.; SHAFAGHI, A. Efficacy of Saccharomyces boulardii with antibiotics in acute amoebiasis. World Journal of Gastroenterology: WJG, v. 9, n. 8, p. 1832, 2003. MCCONNELL, E. L.; FADDA, H. M.; BASIT, A. W. Gut instincts: explorations in intestinal physiology and drug delivery. International Journal of Pharmaceutics, v. 364, n. 2, p. 213- 226, 2008. ISSN 0378-5173. MCFARLAND, L. V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World Journal of Gastroenterology: WJG, v. 16, n. 18, p. 2202, 2010. MCFARLAND, L. V.; BERNASCONI, P. Saccharomyces boulardii'. A Review of an Innovative Biotherapeutic Agent. Microbial Ecology in Health and Disease, v. 6, n. 4, p. 157- 171, 1993. MCMASTER, L.; KOKOTT, S.; REID, S.; ABRATT, V. Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140. International Journal of Food Microbiology, v. 102, n. 2, p. 231-237, 2005. ISSN 0168-1605. MØRCH, Ý. A.; DONATI, I.; STRAND, B. L.; SKJÅK-BRÆK, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, v. 7, n. 5, p. 1471-1480, 2006. ISSN 1525- 7797. POLONI, V.; SALVATO, L.; PEREYRA, C.; OLIVEIRA, A.; ROSA, C.; CAVAGLIERI, L.; KELLER, K. M. Bakery by-products based feeds borne-Saccharomyces cerevisiae strains with probiotic and antimycotoxin effects plus antibiotic resistance properties for use in animal production. Food and Chemical Toxicology, v. 107, p. 630-636, 2017. ISSN 0278-6915. PONCELET, D.; LENCKI, R.; BEAULIEU, C.; HALLE, J.; NEUFELD, R.; FOURNIER, A. Production of alginate beads by emulsification/internal gelation. I. Methodology. Applied Microbiology and Biotechnology, v. 38, n. 1, p. 39-45, 1992. ISSN 0175-7598. PSOMAS, E.; FLETOURIS, D.; LITOPOULOU-TZANETAKI, E.; TZANETAKIS, N. Assimilation of cholesterol by yeast strains isolated from infant feces and Feta cheese. Journal of Dairy Science, v. 86, n. 11, p. 3416-3422, 2003. ISSN 0022-0302. 34 RATHORE, S.; DESAI, P. M.; LIEW, C. V.; CHAN, L. W.; HENG, P. W. S. Microencapsulation of microbial cells. Journal of Food Engineering, v. 116, n. 2, p. 369-381, 2013. ISSN 0260-8774. SÁNCHEZ, M. T.; RUIZ, M. A.; LASSERROT, A.; HORMIGO, M.; MORALES, M. E. An improved ionic gelation method to encapsulate Lactobacillus spp. bacteria: Protection, survival and stability study. Food Hydrocolloids, v. 69, p. 67-75, 2017. ISSN 0268-005X. SCHELL, D.; BEERMANN, C. Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Research International, v. 62, p. 308-314, 2014. ISSN 0963-9969. SEMYONOV, D.; RAMON, O.; KOVACS, A.; FRIEDLANDER, L.; SHIMONI, E. Airsuspension fluidized-bed microencapsulation of probiotics. Drying Technology, v. 30, n. 16, p. 1918-1930, 2012. ISSN 0737-3937. SHAHIDI, F.; HAN, X. Q. Encapsulation of food ingredients. Critical Reviews in Food Science & Nutrition, v. 33, n. 6, p. 501-547, 1993. ISSN 1040-8398. SHARIF, M. R.; KASHANI, H. H.; ARDAKANI, A. T.; KHEIRKHAH, D.; TABATABAEI, F.; SHARIF, A. The Effect of a Yeast Probiotic on Acute Diarrhea in Children. Probiotics and Antimicrobial Proteins, v. 8, n. 4, p. 211-214, 2016. SHORI, A. B. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI Journal of Biosciences, v. 24, n. 1, p. 1-5, 2017. ISSN 1978-3019. SONG, H.; YU, W.; LIU, X.; MA, X. Improved probiotic viability in stress environments with post-culture of alginate–chitosan microencapsulated low density cells. Carbohydrate Polymers, v. 108, p. 10-16, 2014. ISSN 0144-8617. SULTANA, K.; GODWARD, G.; REYNOLDS, N.; ARUMUGASWAMY, R.; PEIRIS, P.; KAILASAPATHY, K. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, v. 62, n. 1, p. 47-55, 2000. ISSN 0168-1605. SUVARNA, S.; DSOUZA, J.; RAGAVAN, M. L.; DAS, N. Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Science and Biotechnology, v. 27, n. 3, p. 745-753, 2018. ISSN 1226- 7708. SZAJEWSKA, H.; SKORKA, A.; DYLAG, M. Meta‐analysis: Saccharomyces boulardii for treating acute diarrhoea in children. Alimentary Pharmacology & Therapeutics, v. 25, n. 3, p. 257-264, 2007. ISSN 1365-2036. TAKEI, T.; IKEDA, K.; IJIMA, H.; KAWAKAMI, K.; YOSHIDA, M.; HATATE, Y. Preparation of polymeric microcapsules enclosing microbial cells by radical suspension polymerization via water-in-oil-in-water emulsion. Polymer Bulletin, v. 65, n. 3, p. 283-291, 2010. ISSN 0170-0839. 35 THOMAS, M. B.; VAIDYANATHAN, M.; RADHAKRISHNAN, K.; RAICHUR, A. M. Enhanced viability of probiotic Saccharomyces boulardii encapsulated by layer-by-layer approach in pH responsive chitosan–dextran sulfate polyelectrolytes. Journal of Food Engineering, v. 136, p. 1-8, 2014. ISSN 0260-8774. TRABELSI, I.; BEJAR, W.; AYADI, D.; CHOUAYEKH, H.; KAMMOUN, R.; BEJAR, S.; BEN SALAH, R. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. International Journal of Biological Macromolecules, v. 61, n. Supplement C, p. 36-42, 2013. ISSN 0141-8130. TRIPATHI, M. K.; GIRI, S. K. Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, v. 9, p. 225-241, 2014. ISSN 1756-4646. ZHANG, Y.; LI, L.; GUO, C.; MU, D.; FENG, B.; ZUO, X.; LI, Y. Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC Gastroenterology, v. 16, n. 1, p. 62, 2016. ISSN 1471-230X. ZHAO, Q.; MUTUKUMIRA, A.; LEE, S. J.; MADDOX, I.; SHU, Q. Functional properties of free and encapsulated Lactobacillus reuteri DPC16 during and after passage through a simulated gastrointestinal tract. World Journal of Microbiology and Biotechnology, v. 28, n. 1, p. 61-70, 2012. ISSN 0959-3993. ZHAO, R.; SUN, J.; TORLEY, P.; WANG, D.; NIU, S. Measurement of particle diameter of Lactobacillus acidophilus microcapsule by spray drying and analysis on its microstructure. World Journal of Microbiology and Biotechnology, v. 24, n. 8, p. 1349-1354, 2008. AOAC. Official methods of analysis of the Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists., 1970. ARSLAN-TONTUL, S.; ERBAS, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, v. 81, p. 160-169, 2017. ISSN 0023-6438. ARSLAN, S.; ERBAS, M.; TONTUL, I.; TOPUZ, A. Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWTFood Science and Technology, v. 63, n. 1, p. 685-690, 2015. ISSN 0023-6438. BEGOT, C.; DESNIER, I.; DAUDIN, J. D.; LABADIE, J. C.; LEBERT, A. Recommendations for calculating growth parameters by optical density measurements. Journal of Microbiological Methods, v. 25, n. 3, p. 225-232, 1996. ISSN 0167-7012. BHANDARI, B. R.; BANSAL, N.; ZHANG, M.; SCHUCK, P. Handbook of food powders: processes and properties. Elsevier, 2013. ISBN 0857098675. BLIGH, E. G.; DYER, W. J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, v. 37, n. 8, p. 911-917, 1959. ISSN 0576-5544. CAI, Y.; CORKE, H. Production and Properties of Spray‐dried Amaranthus Betacyanin Pigments. Journal of Food Science, v. 65, n. 7, p. 1248-1252, 2000. ISSN 1750-3841. CARLESSO, V. D. O.; BERBERT, P. A.; SILVA, R. F. D.; DETMANN, E. Avaliação de modelos de secagem em camada fina de sementes de maracujá amarelo. Revista Brasileira de Sementes, 2007. ISSN 0101-3122. CHAMPAGNE, C. P.; MONDOU, F.; RAYMOND, Y.; ROY, D. Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Research International, v. 29, n. 5-6, p. 555-562, 1996. ISSN 0963-9969. DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Química de Alimentos de Fennema. Artmed Editora, 2009. ISBN 8536323345. FAVARIN, L.; LAUREANO-MELO, R.; LUCHESE, R. H. Survival of free and microencapsulated Bifidobacterium: effect of honey addition. Journal of Microencapsulation, v. 32, n. 4, p. 329-335, 2015. ISSN 0265-2048. FRATIANNI, F.; CARDINALE, F.; RUSSO, I.; IULIANO, C.; TREMONTE, P.; COPPOLA, R.; NAZZARO, F. Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, v. 31, n. 3, p. 299-305, 2014. ISSN 0265-2048. GAONKAR, A. G.; VASISHT, N.; KHARE, A. R.; SOBEL, R. Microencapsulation in the Food Industry: a Practical Implementation Guide. USA: Elsevier, 2014. ISBN 0124047351. 50 GARTI, N.; MCCLEMENTS, D. J. Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Cambridge: Elsevier, 2012. ISBN 0857095900. GUIMARÃES, R. R.; VENDRAMINI, A. L. D. A.; SANTOS, A. C. D.; LEITE, S. G. F.; MIGUEL, M. A. L. Development of probiotic beads similar to fish eggs. Journal of Functional Foods, v. 5, n. 2, p. 968-973, 2013. ISSN 1756-4646. HÉBRARD, G.; HOFFART, V.; BEYSSAC, E.; CARDOT, J.-M.; ALRIC, M.; SUBIRADE, M. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. Journal of Microencapsulation, v. 27, n. 4, p. 292-302, 2010. ISSN 0265- 2048. HOLKEM, A. T.; RADDATZ, G. C.; BARIN, J. S.; FLORES, É. M. M.; MULLER, E. I.; CODEVILLA, C. F.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, v. 76, p. 216-221, 2017. ISSN 0023-6438. HOLKEM, A. T.; RADDATZ, G. C.; NUNES, G. L.; CICHOSKI, A. J.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT-Food Science and Technology, v. 71, p. 302-308, 2016. ISSN 0023-6438. LEONG, J.-Y.; LAM, W.-H.; HO, K.-W.; VOO, W.-P.; LEE, M. F.-X.; LIM, H.-P.; LIM, S.- L.; TEY, B.-T.; PONCELET, D.; CHAN, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, v. 24, p. 44-60, 2016. ISSN 1674-2001. MØRCH, Ý. A.; DONATI, I.; STRAND, B. L.; SKJÅK-BRÆK, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, v. 7, n. 5, p. 1471-1480, 2006. ISSN 1525- 7797. PAGE, G. E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers. 1949. PONCELET, D.; LENCKI, R.; BEAULIEU, C.; HALLE, J.; NEUFELD, R.; FOURNIER, A. Production of alginate beads by emulsification/internal gelation. I. Methodology. Applied Microbiology and Biotechnology, v. 38, n. 1, p. 39-45, 1992. ISSN 0175-7598. RATHORE, S.; DESAI, P. M.; LIEW, C. V.; CHAN, L. W.; HENG, P. W. S. Microencapsulation of microbial cells. Journal of Food Engineering, v. 116, n. 2, p. 369-381, 2013. ISSN 0260-8774. SHEU, T.; MARSHALL, R. Microentrapment of lactobacilli in calcium alginate gels. Journal of Food Science, v. 58, n. 3, p. 557-561, 1993. ISSN 1750-3841. SKJÅK-BRÆK, G.; GRASDALEN, H.; SMIDSRØD, O. Inhomogeneous polysaccharide ionic gels. Carbohydrate Polymers, v. 10, n. 1, p. 31-54, 1989. ISSN 0144-8617. 51 SONG, H.; YU, W.; LIU, X.; MA, X. Improved probiotic viability in stress environments with post-culture of alginate–chitosan microencapsulated low density cells. Carbohydrate Polymers, v. 108, p. 10-16, 2014. ISSN 0144-8617. TAKEI, T.; IKEDA, K.; IJIMA, H.; KAWAKAMI, K.; YOSHIDA, M.; HATATE, Y. Preparation of polymeric microcapsules enclosing microbial cells by radical suspension polymerization via water-in-oil-in-water emulsion. Polymer Bulletin, v. 65, n. 3, p. 283-291, 2010. ISSN 0170-0839. AKPINAR, E.; MIDILLI, A.; BICER, Y. Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Conversion and Management, v. 44, n. 10, p. 1689-1705, 2003. ISSN 0196-8904. ALBADRAN, H. A., CHATZIFRAGKOU, A., KHUTORYANSKIY, V. V., CHARALAMPOPOULOS, D. Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Research International, v. 74, p. 208-216, 2015. AL-MUHTASEB, A.; MCMINN, W.; MAGEE, T. Moisture sorption isotherm characteristics of food products: a review. Food and Bioproducts Processing, v. 80, n. 2, p. 118-128, 2002. ISSN 0960-3085. ANSARI, F.; POURJAFAR, H.; JODAT, V.; SAHEBI, J.; ATAEI, A. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express, v. 7, n. 1, p. 144, 2017. ISSN 2191-0855. AOAC. Official methods of analysis of the Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists., 1970. ARSLAN-TONTUL, S.; ERBAS, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, v. 81, p. 160-169, 2017. ISSN 0023-6438. BEGOT, C.; DESNIER, I.; DAUDIN, J. D.; LABADIE, J. C.; LEBERT, A. Recommendations for calculating growth parameters by optical density measurements. Journal of Microbiological Methods, v. 25, n. 3, p. 225-232, 1996. ISSN 0167-7012. BHANDARI, B. R.; BANSAL, N.; ZHANG, M.; SCHUCK, P. Handbook of Food Powders: Processes and Properties. Elsevier, 2013. ISBN 0857098675. BROOKER, D. B.; BAKKER-ARKEMA, F. W.; HALL, C. W. Drying and Storage of Grains and Oilseeds. Springer Science & Business Media, 1992. ISBN 0442205155. BRUNAUER, S.; EMMETT, P. H.; TELLER, E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Cociety, v. 60, n. 2, p. 309-319, 1938. ISSN 0002-7863. BURGAIN, J.; GAIANI, C.; LINDER, M.; SCHER, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, v. 104, n. 4, p. 467-483, 2011. ISSN 0260-8774. CAI, Y.; CORKE, H. Production and Properties of Spray‐dried Amaranthus Betacyanin Pigments. Journal of Food Science, v. 65, n. 7, p. 1248-1252, 2000. ISSN 1750-3841. CARLESSO, V. D. O.; BERBERT, P. A.; SILVA, R. F. D.; DETMANN, E. Avaliação de modelos de secagem em camada fina de sementes de maracujá amarelo. Revista Brasileira de Sementes, 2007. ISSN 0101-3122. 79 CHAMPAGNE, C. P.; MONDOU, F.; RAYMOND, Y.; ROY, D. Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Research International, v. 29, n. 5-6, p. 555-562, 1996. ISSN 0963-9969. DE FARIA, R. Q.; TEIXEIRA, I. R.; DEVILLA, I. A.; ASCHERI, D. P.; RESENDE, O. Cinética de secagem de sementes de crambe. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 16, n. 5, p. 573-584, 2012. ISSN 1415-4366. DE LA CRUZ-GAVIA, A.; PÉREZ-ALONSO, C.; BARRERA-DÍAZ, C. E.; ALVAREZRAMÍREZ, J.; CARRILLO-NAVAS, H.; GUADARRAMA-LEZAMA, A. Y. Survival of Saccharomyces cerevisiae microencapsulated with complex coacervate after freezing process. Food Hydrocolloids, v. 82, p. 45-52, 2018. ISSN 0268-005X. DIANAWATI, D.; MISHRA, V.; SHAH, N. P. Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review. Critical Reviews in Food Science and Nutrition, v. 56, n. 10, p. 1685-1716, 2016. ERATTE, D., DOWLING, K., BARROW, C. J., ADHIKARI, B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends in Food Science & Technology, v. 71, p. 121-131, 2018. FAVARIN, L.; LAUREANO-MELO, R.; LUCHESE, R. H. Survival of free and microencapsulated Bifidobacterium: effect of honey addition. Journal of Microencapsulation, v. 32, n. 4, p. 329-335, 2015. ISSN 0265-2048. FRATIANNI, F.; CARDINALE, F.; RUSSO, I.; IULIANO, C.; TREMONTE, P.; COPPOLA, R.; NAZZARO, F. Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, v. 31, n. 3, p. 299-305, 2014. ISSN 0265-2048. GALLO, M.; BEVILACQUA, A.; SPERANZA, B.; SINIGAGLIA, M.; CORBO, M. R. Alginate beads and apple pieces as carriers for Saccharomyces cerevisiae var. boulardii, as representative of yeast functional starter cultures. International Journal of Food Science a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11003/1/2019%20-%20Matheus%20Augusto%20Silva%20Santos.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11003/2/2019%20-%20Matheus%20Augusto%20Silva%20Santos.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11003/3/2019%20-%20Matheus%20Augusto%20Silva%20Santos.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11003/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
c20d9e28fcbe75d95846097941d17f05
a7fc7d4d095051f04c33df55e64fe24e
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107895934615552