Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores

Detalhes bibliográficos
Autor(a) principal: Carvalho, Lucas Monteiro de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/11404
Resumo: A irisina é um peptídeo descoberto em 2012 com funções importantes sobre a homeostase dos mais diversos tecidos biológicos. Sua ação endócrina foi estudada em tecido adiposo, neurônios e cardiomiócitos. Entretanto, pouco se sabe a respeito dos efeitos da irisina induzida pelo treinamento resistido sobre a cardioproteção de roedores. Com isso, o objetivo do presente estudo é investigar o efeito agudo de uma sessão de treinamento resistido sobre os níveis de irisina e cardioproteção em roedores. Ratos wistar machos foram submetidos a 1 sessão de treinamento resistido de escadaria e a cardioproteção foi avaliada após 30 minutos de isquemia e 60 minutos de reperfusão no Langendorff. A irisina e a PGC-1α foram avaliadas no músculo esquelético e coração. Os resultados demonstram que 1 sessão de treinamento resistido não gerou alterações significativamente estatísticas nos parâmetros PDVE, PDFVE, +dP/dt, -dP/dt e área de infarto, embora o effect size para PDFVE seja 0.81, sugerindo melhorias no parâmetro. A irisina no músculo e coração não apresentou diferenças estatísticas embora o effect size da irisina cardíaca seja 0.69. Já para a PGC-1α, notou-se redução estatisticamente significativa no músculo esquelético. Em conclusão, os resultados demonstram que em resposta a 1 sessão de treino resistido não houve cardioproteção, embora os mecanismos cardioprotetores possivelmente tenham iniciado, evidenciados pelos valores de PDFVE. E quanto aos níveis de irisina, não há alteração tecidual imediatamente após a sessão e a alta intensidade do treinamento reduziu os níveis de PGC-1α no músculo
id UFRRJ-1_0c6025a5be6d4402fb86a45ee47b60bf
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/11404
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Carvalho, Lucas Monteiro deSilveira, Anderson Luiz Bezerra da078.828.167-44https://orcid.org/0000-0002-0862-5094http://lattes.cnpq.br/2389812933788850Silveira, Anderson Luiz Bezerra da078.828.167-44https://orcid.org/0000-0002-0862-5094http://lattes.cnpq.br/2389812933788850Olivares, Emerson Lopes027.886.707-37http://lattes.cnpq.br/1361659701207857Souza, Luciane Claudia Barcellos dos Santos013.582.027-88http://lattes.cnpq.br/4338421078241207151.907.467-042023-12-22T01:52:19Z2023-12-22T01:52:19Z2022-08-29CARVALHO, Lucas Monteiro de. Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores. 2022. 74 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.https://rima.ufrrj.br/jspui/handle/20.500.14407/11404A irisina é um peptídeo descoberto em 2012 com funções importantes sobre a homeostase dos mais diversos tecidos biológicos. Sua ação endócrina foi estudada em tecido adiposo, neurônios e cardiomiócitos. Entretanto, pouco se sabe a respeito dos efeitos da irisina induzida pelo treinamento resistido sobre a cardioproteção de roedores. Com isso, o objetivo do presente estudo é investigar o efeito agudo de uma sessão de treinamento resistido sobre os níveis de irisina e cardioproteção em roedores. Ratos wistar machos foram submetidos a 1 sessão de treinamento resistido de escadaria e a cardioproteção foi avaliada após 30 minutos de isquemia e 60 minutos de reperfusão no Langendorff. A irisina e a PGC-1α foram avaliadas no músculo esquelético e coração. Os resultados demonstram que 1 sessão de treinamento resistido não gerou alterações significativamente estatísticas nos parâmetros PDVE, PDFVE, +dP/dt, -dP/dt e área de infarto, embora o effect size para PDFVE seja 0.81, sugerindo melhorias no parâmetro. A irisina no músculo e coração não apresentou diferenças estatísticas embora o effect size da irisina cardíaca seja 0.69. Já para a PGC-1α, notou-se redução estatisticamente significativa no músculo esquelético. Em conclusão, os resultados demonstram que em resposta a 1 sessão de treino resistido não houve cardioproteção, embora os mecanismos cardioprotetores possivelmente tenham iniciado, evidenciados pelos valores de PDFVE. E quanto aos níveis de irisina, não há alteração tecidual imediatamente após a sessão e a alta intensidade do treinamento reduziu os níveis de PGC-1α no músculoCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorIrisin is a peptide discovered in 2012 with important functions on biological tissues homeostasis. The endocrine action was studied in adipose tissue, neurons and cardiac cells. However, there still a gap of knowledge about the exercise-induced irisin on cardioprotection of rodents. So, this study aims to investigate the acute effect of one session of resistance training on irisin levels and cardioprotection of rodents. For that, male wistar rats were submitted to 1 session of ladder resistance training and the cardioprotection were evaluated after 30 min of ischemia and 60 min of reperfusion on Langendorff. Irisin and PGC-1α was evaluated at skeletal muscle and cardiac tissue. The results demonstrated that 1 session of resistance training did not induce significative differences for LVDP, LVEDP, +dP/dt, -dP/dT and infarct size area, although the effect size for LVEDP is 0.81 indicating a large effect size. There is any significative different at irisin for skeletal muscle and cardiac tissue but effect size for cardiac irisin is 0.69, indicating a medium effect size. And for PGC-1α, there is a significative reduction at skeletal muscle. In conclusion, the results shown that immediately after a session of resistance training, there is no cardioprotection but from that session, the mechanisms which induce cardioprotection begin. And the levels of irisin did not alter on skeletal muscle and cardiac tissue immediately after a session of resistance training and the high intensity exercise induce a reduction of PGC-1α at skeletal muscle.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências FisiológicasUFRRJBrasilInstituto de Ciências Biológicas e da SaúdeTreinamento ResistidoFNDC5IsquemiaReperfusãoResistance TrainingFNDC5IschemiaReperfusionFisiologiaEfeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedoresAcute effect of resistance training on irisin, PGC-1α expression and cardioprotection on rodentsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAGUER, Céline et al. Circulating Irisin and Myostatin as Markers of Muscle Strength and Physical Condition in Elderly Subjects. Frontiers in Physiology, v. 1, p. 871, 2019. DOI: 10.3389/fphys.2019.00871. Disponível em: www.frontiersin.org. AHA. Cardiovascular Disease: A costly burden for America, projections 2035. Journal of American Heart Ass, [S. l.], 2017. AL-GOBLAN, Abdullah S.; AL-ALFI, Mohammed A.; KHAN, Muhammad Z. Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, [S. l.], 2014. DOI: 10.2147/DMSO.S67400. ALDAKKAK, Mohammed; STOWE, David F.; HEISNER, James S.; SPENCE, Marisha; CAMARA, Amadou K. S. Enhanced Na +/H + exchange during ischemia and reperfusion impairs mitochondrial bioenergetics and myocardial function. Journal of Cardiovascular Pharmacology, v. 52, n. 3, p. 236–244, 2008. DOI: 10.1097/FJC.0b013e3181831337. ALVES, Jadson P.; NUNES, Ramiro B.; STEFANI, Giuseppe P.; DAL LAGO, Pedro. Resistance training improves hemodynamic function, collagen deposition and inflammatory profiles: Experimental model of heart failure. PLoS ONE, v. 9, n. 10, 2014. DOI: 10.1371/journal.pone.0110317. AMANAKIS, Georgios; MURPHY, Elizabeth. Cyclophilin D: An Integrator of Mitochondrial Function. Frontiers in Physiology, [S. l.], v. 11, n. June, p. 1–6, 2020. DOI: 10.3389/fphys.2020.00595. AMANAT, Sasan; SINAEI, Ehsan; PANJI, Mohammad; MOHAMMADPORHODKI, Reza; BAGHERI-HOSSEINABADI, Zahra; ASADIMEHR, Hadis; FARAROUEI, Mohammad; DIANATINASAB, Aria. A Randomized Controlled Trial on the Effects of 12 Weeks of Aerobic, Resistance, and Combined Exercises Training on the Serum Levels of Nesfatin-1, Irisin-1 and HOMA-IR. Frontiers in Physiology, v. 11, n. 12, p. 1–14, 2020. DOI: 10.3389/fphys.2020.562895. ANASTASILAKIS, Athanasios D. et al. Circulating irisin in healthy, young individuals: Day- night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. Journal of Clinical Endocrinology and Metabolism, [S. l.], v. 99, n. 9, p. 3247–3255, 2014. DOI: 10.1210/jc.2014-1367. ANTMAN, Elliott M. et al. 2007 Focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association task force on practice guidelines. 50 Circulation, v. 117, n. 2, p. 296–329, 2008. DOI: 10.1161/CIRCULATIONAHA.107.188209. ARANCIBIA, S.; SILHOL, M.; MOULIÈRE, F.; MEFFRE, J.; HÖLLINGER, I.; MAURICE, T.; TAPIA-ARANCIBIA, L. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiology of Disease, [S. l.], 2008. DOI: 10.1016/j.nbd.2008.05.012. ARBAB-ZADEH, Armin; DIJK, Erika; PRASAD, Anand; FU, Qi; TORRES, Pilar; ZHANG, Rong; THOMAS, James D.; PALMER, Dean; LEVINE, Benjamin D. Effect of aging and physical activity on left ventricular compliance. Circulation, [S. l.], v. 110, n. 13, p. 1799– 1805, 2004. DOI: 10.1161/01.CIR.0000142863.71285.74. ARBEX, Alberto Krayyem; ROCHA, Denise R. T. W.; AIZENBERG, Marisa; CIRUZZI, Maria S. Obesity epidemic in Brazil and Argentina: A public health concern. Journal of Health, Population and Nutrition, [S. l.], 2014. DOI: 10.3329/jhpn.v32i2.2626. ARCHUNDIA-HERRERA, Carolina; MACIAS-CERVANTES, MacIste; RUIZ-MUÑOZ, Bernardo; VARGAS-ORTIZ, Katya; KORNHAUSER, Carlos; PEREZ-VAZQUEZ, Victoriano. Muscle irisin response to aerobic vs HIIT in overweight female adolescents Fred DiMenna. Diabetology and Metabolic Syndrome, [S. l.], v. 9, n. 1, p. 5–11, 2017. DOI: 10.1186/s13098-017-0302-5. Disponível em: https://doi.org/10.1186/s13098-017-0302-5. ARHIRE, Lidia I.; MIHALACHE, Laura; COVASA, Mihai. Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome. Frontiers in Endocrinology, [S. l.], 2019. DOI: 10.3389/fendo.2019.00524. ARYAPPALLI, Priyanka et al. The IL-6/STAT3 signaling pathway is an early target of manuka honey-induced suppression of human breast cancer cells. Frontiers in Oncology, [S. l.], 2017. DOI: 10.3389/fonc.2017.00167. ASADI, Yasin; GORJIPOUR, Fazel; BEHROUZIFAR, Sedigheh; VAKILI, Abedin. Irisin Peptide Protects Brain Against Ischemic Injury Through Reducing Apoptosis and Enhancing BDNF in a Rodent Model of Stroke. Neurochemical Research, [S. l.], 2018. DOI: 10.1007/s11064-018-2569-9. ASKARI, Hassan; RAJANI, Sulail Fatima; POOREBRAHIM, Mansour; HAGHI-AMINJAN, Hamed; RAEIS-ABDOLLAHI, Ehsan; ABDOLLAHI, Mohammad. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharmacological Research, 2018. DOI: 10.1016/j.phrs.2018.01.012. 51 AYDIN, Suna et al. Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: Cardiac muscle produces more irisin than skeletal muscle. Peptides, [S. l.], 2014. DOI: 10.1016/j.peptides.2013.11.024. BANKS, W. A.; KASTIN, A. J.; BROADWELL, R. D. Passage of cytokines across the blood- brain barrier. NeuroImmunoModulation, 1995. DOI: 10.1159/000097202. BAO, Pengli; LIU, Geli; WEI, Ying. Association between IL-6 and related risk factors of metabolic syndrome and cardiovascular disease in young rats. International Journal of Clinical and Experimental Medicine, [S. l.], 2015. BEVINGTON, A.; BROWN,J.; PRATT, A.; MESSER,J.; WALLS, J. Impaired glycolysis and protein catabolism induced by acid in L6 rat muscle cells. European Journal of Clinical Investigation, [S. l.], v. 28, n. 11, p. 908–917, 1998. DOI: 10.1046/j.1365- 2362.1998.00382.x. BI, Jianbin et al. Irisin alleviates liver ischemia-reperfusion injury by inhibiting excessive mitochondrial fission, promoting mitochondrial biogenesis and decreasing oxidative stress. Redox Biology, [S. l.], v. 20, n. July 2018, p. 296–306, 2019. DOI: 10.1016/j.redox.2018.10.019. BLIZZARD LEBLANC, Devin R.; RIOUX, Brittany V.; PELECH, Cody; MOFFATT, Teri L.; KIMBER, Dustin E.; DUHAMEL, Todd A.; DOLINSKY, Vernon W.; MCGAVOCK, Jonathan M.; SENECHAL, Martin. Exercise-induced irisin release as a determinant of the metabolic response to exercise training in obese youth: The exit trial. Physiological Reports, [S. l.], v. 5, n. 23, p. 1–11, 2017. DOI: 10.14814/phy2.13539. BOSTRÖM, Pontus et al. A PGC1a dependent myokine that derives browning of white fat and thermogenesis. Nature, [S. l.], 2012. DOI: 10.1038/nature10777.A. BRAILOIU, Eugen; DELIU, Elena; SPORICI, Romeo A.; BRAILOIU, G. Cristina. Irisin evokes bradycardia by activating cardiac-projecting neurons of nucleus ambiguus. Physiological Reports, [S. l.], 2015. DOI: 10.14814/phy2.12419. BRIKEN, Sven et al. Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. Journal of Neuroimmunology, [S. l.], v. 299, p. 53–58, 2016. DOI: 10.1016/j.jneuroim.2016.08.007. Disponível em: http://dx.doi.org/10.1016/j.jneuroim.2016.08.007. BROWN, David A.; MOORE, Russell L. Perspectives in innate and acquired cardioprotection: Cardioprotection acquired through exercise. Journal of Applied Physiology, [S. l.], v. 103, n. 5, p. 1894–1899, 2007. DOI: 10.1152/japplphysiol.00464.2007. 52 BRUUNSGAARD, H.; GALBO, H.; HALKJAER-KRISTENSEN, J.; JOHANSEN, T. L.; MACLEAN, D. A.; PEDERSEN, B. K. Exercise-induced increase in serum inferleukin-6 in humans is related to muscle damage. Journal of Physiology, [S. l.], 1997. DOI: 10.1113/jphysiol.1997.sp021972. BRUUNSGAARD, Helle; LADELUND, S.; PEDERSEN, A. N.; SCHROLL, M.; JØRGENSEN, T.; PEDERSEN, B. K. Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clinical and Experimental Immunology, [S. l.], 2003. DOI: 10.1046/j.1365-2249.2003.02137.x. BURELLE, Yan et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart. American Journal of Physiology - Heart and Circulatory Physiology, [S. l.], 2004. DOI: 10.1152/ajpheart.00925.2003. CAREY, Andrew L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes, [S. l.], 2006. DOI: 10.2337/db05-1404. CHAKRAVORTY, Srabasti J.; HOWIE, Alexander J.; GIRDLESTONE, John; GENTLE, Dean; SAVAGE, Caroline O. S. Nerve growth factor and brain-derived neurotrophic factor mRNAs are regulated in distinct cell populations of rat heart after ischaemia and reperfusion. Journal of Pathology, [S. l.], 2001. DOI: 10.1002/path.878. CHEN, Grace Y.; NUÑEZ, Gabriel. Sterile inflammation: Sensing and reacting to damage. Nature Reviews Immunology, [S. l.], v. 10, n. 12, p. 826–837, 2010. DOI: 10.1038/nri2873. CHEN, Ken et al. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Science Translational Medicine, [S. l.], 2017. DOI: 10.1126/scitranslmed.aao6298. CHOOI, Yu Chung; DING, Cherlyn; MAGKOS, Faidon. The epidemiology of obesity. Metabolism: Clinical and Experimental, [S. l.], 2019. DOI: 10.1016/j.metabol.2018.09.005. CICERO, Arrigo F. G.; D’ADDATO, Sergio; SANTI, Francesca; FERRONI, Alienor; BORGHI, Claudio. Leisure-time physical activity and cardiovascular disease mortality: The Brisighella Heart Study. Journal of Cardiovascular Medicine, [S. l.], 2012. DOI: 10.2459/JCM.0b013e3283516798. CLAUSEN, Johan S. R.; MAROTT, Jacob L.; HOLTERMANN, Andreas; GYNTELBERG, Finn; JENSEN, Magnus T. Midlife Cardiorespiratory Fitness and the Long-Term Risk of Mortality: 46 Years of Follow-Up. Journal of the American College of Cardiology, [S. l.], 2018. DOI: 10.1016/j.jacc.2018.06.045. 53 COHEN, Harvey Jay; PIEPER, Carl F.; HARRIS, Tamara; RAO, K. Murali K.; CURRIE, Mark S. The association of plasma IL-6 levels with functional disability in community-dwelling elderly. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, [S. l.], 1997. DOI: 10.1093/gerona/52A.4.M201. COLETTA, Adriana M. et al. The impact of high-intensity interval exercise training on NK- cell function and circulating myokines for breast cancer prevention among women at high risk for breast cancer. Breast Cancer Research and Treatment, [S. l.], v. 187, n. 2, p. 407– 416, 2021. DOI: 10.1007/s10549-021-06111-z. Disponível em: https://doi.org/10.1007/s10549-021-06111-z. COLPITTS, Benjamin H.; RIOUX, Brittany V.; EADIE, Ashley L.; BRUNT, Keith R.; SÉNÉCHAL, Martin. Irisin response to acute moderate intensity exercise and high intensity interval training in youth of different obesity statuses: A randomized crossover trial. Physiological Reports, [S. l.], v. 10, n. 4, p. 1–12, 2022. DOI: 10.14814/phy2.15198. COSIO, Pedro L.; CRESPO-POSADAS, Manuel; VELARDE-SOTRES, Álvaro; PELAEZ, Mireia. Effect of chronic resistance training on circulating irisin: Systematic review and meta-analysis of randomized controlled trials. International Journal of Environmental Research and Public Health, [S. l.], v. 18, n. 5, p. 1–16, 2021. DOI: 10.3390/ijerph18052476. DASKALOPOULOU, Stella S.; COOKE, Alexandra B.; GOMEZ, Yessica Haydee; MUTTER, Andrew F.; FILIPPAIOS, Andreas; MESFUM, Ertirea T.; MANTZOROS, Christos S. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. European Journal of Endocrinology, [S. l.], 2014. DOI: 10.1530/EJE-14-0204. DE LA ROSA, Adrián; SOLANA, Elisabeth; CORPAS, Rubén; BARTRÉS-FAZ, David; PALLÀS, Mercè; VINA, Jose; SANFELIU, Coral; GOMEZ-CABRERA, Mari Carmen. Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B. Scientific Reports, [S. l.], 2019. DOI: 10.1038/s41598-019-40040-8 DEMIREL, Haydar A.; POWERS, Scott K.; ZERGEROGLU, Murat A.; SHANELY, R. Andrew; HAMILTON, Karyn; COOMBES, Jeff; NAITO, Hisashi. Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Journal of Applied Physiology, [S. l.], 2001. DOI: 10.1152/jappl.2001.91.5.2205. DIANATINASAB, Aria; KORONI, Roghayeh; BAHRAMIAN, Mehrdad; BAGHERI- 54 HOSSEINABADI, Zahra; VAISMORADI, Mojtaba; FARAROUEI, Mohammad; AMANAT, Sasan. The effects of aerobic, resistance, and combined exercises on the plasma irisin levels, HOMA-IR, and lipid profiles in women with metabolic syndrome: A randomized controlled trial. Journal of Exercise Science and Fitness, [S. l.], v. 18, n. 3, p. 168–176, 2020. DOI: 10.1016/j.jesf.2020.06.004. Disponível em: https://doi.org/10.1016/j.jesf.2020.06.004. DOMENECH, Raúl; MACHO, Pilar; SCHWARZE, Hermann; SÁNCHEZ, Gina. Exercise induces early and late myocardial preconditioning in dogs. Cardiovascular Research, [S. l.], v. 55, n. 3, p. 561–566, 2002. DOI: 10.1016/S0008-6363(02)00334-6. DONOVAN, M. J. et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development, [S. l.], 2000. DOI: 10.1242/dev.127.21.4531. DWIVEDI, Yogesh; RIZAVI, Hooriyah S.; CONLEY, Robert R.; ROBERTS, Rosalinda C.; TAMMINGA, Carol A.; PANDEY, Ghanshyam N. Altered gene expression of brain- derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Archives of General Psychiatry, [S. l.], 2003. DOI: 10.1001/archpsyc.60.8.804. EATON, Malcolm; GRANATA, Cesare; BARRY, Julianne; SAFDAR, Adeel; BISHOP, David; LITTLE, Jonathan P. Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle. Journal of Sport and Health Science, [S. l.], v. 7, n. 2, p. 191–196, 2018. DOI: 10.1016/j.jshs.2017.01.003. Disponível em: https://doi.org/10.1016/j.jshs.2017.01.003. EDGETT, Brittany A.; FOSTER, William S.; HANKINSON, Paul B.; SIMPSON, Craig A.; LITTLE, Jonathan P.; GRAHAM, Ryan B.; GURD, Brendon J. Dissociation of Increases in PGC-1α and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise. PLoS ONE, [S. l.], v. 8, n. 8, 2013. DOI: 10.1371/journal.pone.0071623. EGAN, Brendan; ZIERATH, Juleen R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, [S. l.], v. 17, n. 2, p. 162–184, 2013. DOI: 10.1016/j.cmet.2012.12.012. Disponível em: http://dx.doi.org/10.1016/j.cmet.2012.12.012. ELEFTHERIADIS, Theodoros; PISSAS, Georgios; LIAKOPOULOS, Vassilios; STEFANIDIS, Ioannis. Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Frontiers in Immunology, [S. l.], v. 7, n. JUL, p. 1–5, 2016. DOI: 10.3389/fimmu.2016.00279. 55 ELTZSCHIG, Holger K.; ECKLE, Tobias. Ischemia and reperfusion-from mechanism to translation. Nature Medicine, [S. l.], v. 17, n. 11, p. 1391–1401, 2011. DOI: 10.1038/nm.2507. ESGALHADO, Marta Gormicho Boavida Marques; STOCKLER-PINTO, Milena Barcza; CARDOZO, Ludmila Ferreira Medeiros de França; BARBOZA, Jorge Eduardo; MAFRA, Denise. Does high intensity exercise affects irisin plasma levels in hemodialysis patients? A pilot study. Jornal brasileiro de nefrologia : ’orgao oficial de Sociedades Brasileira e Latino-Americana de Nefrologia, [S. l.], v. 40, n. 1, p. 53–58, 2018. DOI: 10.1590/1678- 4685-JBN-3802. FEBBRAIO, Mark A.; HISCOCK, Natalie; SACCHETTI, Massimo; FISCHER, Christian P.; PEDERSEN, Bente K. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes, [S. l.], 2004. DOI: 10.2337/diabetes.53.7.1643. FERNANDES, A. A. et al. A single resistance exercise session improves myocardial contractility in spontaneously hypertensive rats. Brazilian Journal of Medical and Biological Research, [S. l.], v. 48, n. 9, p. 813–821, 2015. DOI: 10.1590/1414-431X20154355. FERNANDO, Maria Ruweka; REYES, Jose Luis; IANNUZZI, Jordan; LEUNG, Gabriella; MCKAY, Derek Mark. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS ONE, [S. l.], 2014. DOI: 10.1371/journal.pone.0094188. FIGUROV, Alexander; POZZO-MILLER, Lucas D.; OLAFSSON, Petur; WANG, Ti; LU, Bai. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, [S. l.], 1996. DOI: 10.1038/381706a0 FRANK, Anja; BONNEY, Megan; BONNEY, Stephanie; WEITZEL, Lindsay; PH, D.; KOEPPEN, Michael; ECKLE, Tobias. Myocardial ischemia reperfusion injury - from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth, [S. l.], p. 1–18, 2012. DOI: 10.1177/1089253211436350.Myocardial. FRENCH, Joel P.; HAMILTON, Karyn L.; QUINDRY, John C.; LEE, Youngil; UPCHURCH, Patrick A.; POWERS, Scott K. Exercise‐induced protection against myocardial apoptosis and necrosis: MnSOD, calcium‐handling proteins, and calpain. The FASEB Journal, [S. l.], 2008. DOI: 10.1096/fj.07-102541. FULGHUM, Kyle; HILL, Bradford G. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Frontiers in Cardiovascular Medicine, 2018. DOI: 10.3389/fcvm.2018.00127. FULLER, William; PARMAR, Vina; EATON, Philip; BELL,James R.; SHATTOCK, Michael 56 J. C ardiac ischemia causes inhibition of the Na / K ATPase by a labile cytosolic compound whose production is linked to oxidant stress. [S. l.], v. 57, p. 1044–1051, 2003. GAO, Danchen; ZHANG, Li; DHILLON, Ranvir; HONG, Ting Ting; SHAW, Robin M.; ZHU, Jianhua. Dynasore Protects Mitochondria and Improves Cardiac Lusitropy in Langendorff Perfused Mouse Heart. PLoS ONE, [S. l.], v. 8, n. 4, p. 1–10, 2013. DOI: 10.1371/journal.pone.0060967. GARRIDO, C.; GALLUZZI, L.; BRUNET, M.; PUIG, P. E.; DIDELOT, C.; KROEMER, G. Mechanisms of cytochrome c release from mitochondria. Cell Death and Differentiation, [S. l.], v. 13, n. 9, p. 1423–1433, 2006. DOI: 10.1038/sj.cdd.4401950. GARZA, Michael A.; WASON, Emily A.; CRUGER, Justin R.; CHUNG, Eunhee; ZHANG, John Q. Strength training attenuates post-infarct cardiac dysfunction and remodeling. Journal of Physiological Sciences, [S. l.], v. 69, n. 3, p. 523–530, 2019. DOI: 10.1007/s12576-019-00672-x. Disponível em: https://doi.org/10.1007/s12576-019-00672- x. GEORGOULIS, Anastasios D.; KIAPIDOU, Irini Sofia; VELOGIANNI, Lamprini; STERGIOU, Nicholas; BOLAND, Arthur. Herodicus, the father of sports medicine. Knee Surgery, Sports Traumatology, Arthroscopy, 2007. DOI: 10.1007/s00167-006-0149-z. GERHART-HINES, Zachary; RODGERS, Joseph T.; BARE, Olivia; LERIN, Carles; KIM, Seung Hee; MOSTOSLAVSKY, Raul; ALT, Frederick W.; WU, Zhidan; PUIGSERVER, Pere. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO Journal, [S. l.], v. 26, n. 7, p. 1913–1923, 2007. DOI: 10.1038/sj.emboj.7601633. GIAMPÁ, Sara Quaglia de Campos; MÔNICO-NETO, Marcos; SOUZA, Helton de Sá; MELLO, Marco Túlio De; TUFIK, Sergio; PORTES, Leslie Andrews; SERRA, Andrey Jorge; TUCCI, Paulo José Ferreira; ANTUNES, Hanna Karen Moreira. Effect Of Resistance Training On Myocardial Contractility In Vitro After Sleep Deprivation. International Journal of Cardiovascular Sciences, [S. l.], v. 30, n. 1, p. 20–31, 2017. DOI: 10.5935/2359- 4802.20170019. GLUND, Stephan; DESHMUKH, Atul; YUN, Chau Long; MOLLER, Theodore; KOISTINEN, Heikki A.; CAIDAHL, Kenneth; ZIERATH, Juleen R.; KROOK, Anna. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes, [S. l.], 2007. DOI: 10.2337/db06-1733. GOLDSTEIN, M. S. Humoral nature of hypoglycemia in muscular exercise. American Journal 57 of Physiology-Legacy Content, [S. l.], 1961. DOI: 10.1152/ajplegacy.1961.200.1.67. GOUNI-BERTHOLD, Ioanna; BERTHOLD, Heiner K.; HUH, Joo Young; BERMAN, Reena; SPENRATH, Nadine; KRONE, Wilhelm; MANTZOROS, Christos S. Effects of lipid- lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PloS one, [S. l.], 2013. DOI: 10.1371/journal.pone.0072858. GUO, Wenwen; ZHANG, Baihui; WANG, Xia. Lower irisin levels in coronary artery disease: A meta-analysis. Minerva Endocrinologica, 2020. DOI: 10.23736/S0391-1977.17.02663-3. HALLBERG, Magnus; MORGANSTEIN, Daniel L.; KISKINIS, Evangelos; SHAH, Kunal; KRALLI, Anastasia; DILWORTH, Stephen M.; WHITE, Roger; PARKER, Malcolm G.; CHRISTIAN, Mark. A Functional Interaction between RIP140 and PGC-1α Regulates the Expression of the Lipid Droplet Protein CIDEA. Molecular and Cellular Biology, [S. l.], v. 28, n. 22, p. 6785–6795, 2008. DOI: 10.1128/mcb.00504-08. HAMILTON, Karyn L.; STAIB, Jessica L.; PHILLIPS, Tracey; HESS, Andrea; LENNON, Shannon L.; POWERS, Scott K. Exercise, antioxidants, and HSP72: Protection against myocardial ischemia/reperfusion. Free Radical Biology and Medicine, [S. l.], 2003. DOI: 10.1016/S0891-5849(02)01431-4. HARDIE, D. G.; PAN, D. A. Regulation of fatty acid synthesis and oxidation by the AMP- activated protein kinase. In: BIOCHEMICAL SOCIETY TRANSACTIONS 2002, Anais [...]. [s.l: s.n.] DOI: 10.1042/BST0301064. HE, Yan Yan; ZHANG, Xiao Yang; YUNG, Wing Ho; ZHU, Jing Ning; WANG, Jian Jun. Role of BDNF in central motor structures and motor diseases. Molecular Neurobiology, 2013. DOI: 10.1007/s12035-013-8466-y. HECKSTEDEN, Anne; WEGMANN, Melissa; STEFFEN, Anke; KRAUSHAAR, Jochen; MORSCH, Arne; RUPPENTHAL, Sandra; KAESTNER, Lars; MEYER, Tim. Irisin and exercise training in humans - Results from a randomized controlled training trial. BMC Medicine, [S. l.], 2013. DOI: 10.1186/1741-7015-11-235. HOENE, Miriam; RUNGE, Heike; HÄRING, Hans Ulrich; SCHLEICHER, Erwin D.; WEIGERT, Cora. Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: Role of the STAT3 pathway. American Journal of Physiology - Cell Physiology, [S. l.], 2013. DOI: 10.1152/ajpcell.00025.2012. HORNBERGER JR., Troy A.; FARRAR, Roger P. Physiological Hypertrophy of the FHL Muscle Following 8 Weeks of Progressive Resistance Exercise in the Rat. Canadian Journal of Applied Physiology, [S. l.], 2004. DOI: 10.1139/h04-002. 58 HOSSEINZADEH, Mohammad; LAMIR, Amir Rashid; HEJAZI, Seyed Mahmud. Are heart muscle irisin levels and FNDC5 gene expression regulated by endurance and resistance exercises? Annals of Applied Sport Science, [S. l.], v. 6, n. 1, p. 21–28, 2018. DOI: 10.29252/aassjournal.6.1.21. HOTCHKISS, Richard S.; STRASSER, Andreas; MCDUNN, Jonathan E.; SWANSON, Paul E. Cell death in disease: Mechanisms and emerging therapeutic concepts. New England Journal of Medicine, [S. l.], 2009. HUH, Joo Young et al. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. Journal of Clinical Endocrinology and Metabolism, [S. l.], v. 99, n. 11, p. E2154–E2161, 2014. DOI: 10.1210/jc.2014-1437. HUH, Joo Young; PANAGIOTOU, Grigorios; MOUGIOS, Vassilis; BRINKOETTER, Mary; VAMVINI, Maria T.; SCHNEIDER, Benjamin E.; MANTZOROS, Christos S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism, [S. l.], v. 61, n. 12, p. 1725–1738, 2012. DOI: 10.1016/j.metabol.2012.09.002. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0026049512003320. IMAHASHI, Kenichi; SCHNEIDER, Michael D.; STEENBERGEN, Charles; MURPHY, Elizabeth. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circulation Research, [S. l.], v. 95, n. 7, p. 734–741, 2004. DOI: 10.1161/01.RES.0000143898.67182.4c. IMBODEN, Mary T.; HARBER, Matthew P.; WHALEY, Mitchell H.; FINCH, W. Holmes; BISHOP, Derron L.; KAMINSKY, Leonard A. Cardiorespiratory Fitness and Mortality in Healthy Men and Women. Journal of the American College of Cardiology, [S. l.], 2018. DOI: 10.1016/j.jacc.2018.08.2166. JAYAKUMAR, J. et al. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation, [S. l.], 2001. DOI: 10.1161/hc37t1.094932. JOHANSSON, Barbro B. Hypertension mechanisms causing stroke. In: CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY 1999, Anais [...]. [s.l: s.n.] DOI: 10.1046/j.1440-1681.1999.03081.x. JOHNSON, Miranda D.; BOURET, Sebastien G.; DUNN-MEYNELL, Ambrose A.; BOYLE, 59 Christina N.; LUTZ, Thomas A.; LEVIN, Barry E. Early postnatal amylin treatment enhances hypothalamic leptin signaling and neural development in the selectively bred diet- induced obese rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, [S. l.], 2016. DOI: 10.1152/ajpregu.00326.2016. JUNG, Suryun; KIM, Kijin. Exercise-induced PGC-1α transcriptional factors in skeletal muscle. Integrative Medicine Research, [S. l.], 2014. DOI: 10.1016/j.imr.2014.09.004. KANG, Yun Seok; KIM, Jae Cheol; KIM, Jeong Seok; KIM, Sang Hyun. Effects of swimming exercise on serum irisin and bone FNDC5 in rat models of high-fat diet-induced osteoporosis. Journal of Sports Science and Medicine, [S. l.], v. 18, n. 4, p. 596–603, 2019. KARMAZYN, Morris. The myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury. Keio Journal of Medicine, [S. l.], v. 47, n. 2, p. 65–72, 1998. DOI: 10.2302/kjm.47.65. KARRAS, Spyridon N.; KOUFAKIS, Theocharis; ADAMIDOU, Lilian; DIMAKOPOULOS, Georgios; KARALAZOU, Paraskevi; THISIADOU, Katerina; MAKEDOU, Kali; KOTSA, Kalliopi. Effects of christian orthodox fasting versus time‐restricted eating on plasma irisin concentrations among overweight metabolically healthy individuals. Nutrients, [S. l.], 2021. DOI: 10.3390/nu13041071. KARSTOFT, Kristian; PEDERSEN, Bente K. Skeletal muscle as a gene regulatory endocrine organ. Current Opinion in Clinical Nutrition and Metabolic Care, 2016. DOI: 10.1097/MCO.0000000000000283. KEMI, Ole J.; ELLINGSEN, Øyvind; CECI, Marcello; GRIMALDI, Serena; SMITH, Godfrey L.; CONDORELLI, Gianluigi; WISLØFF, Ulrik. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. Journal of Molecular and Cellular Cardiology, [S. l.], v. 43, n. 3, p. 354– 361, 2007. DOI: 10.1016/j.yjmcc.2007.06.013. KERMANI, Pouneh et al. Neurotrophins promote revascularization by local recruitment of TrkB + endothelial cells and systemic mobilization of hematopoietic progenitors. Journal of Clinical Investigation, [S. l.], 2005. DOI: 10.1172/JCI200522655. KHALAFI, M.; MOHEBBI, H.; KARIMI, P. The effect of high intensity interval training on the serum levels of irisin and fibroblastic growth factor-21 (Fgf-21), and insulin resistance in obese male rats. Iranian Journal of Endocrinology and Metabolism, [S. l.], 2018. KIM, Hee Jae; SO, Byunghun; CHOI, Mijung; KANG, Dongheon; SONG, Wook. Resistance exercise training increases the expression of irisin concomitant with improvement of muscle 60 function in aging mice and humans. Experimental Gerontology, [S. l.], v. 70, p. 11–17, 2015. DOI: 10.1016/j.exger.2015.07.006. Disponível em: http://dx.doi.org/10.1016/j.exger.2015.07.006. KOKKINOS, Peter et al. Exercise capacity and mortality in older men: A 20-year follow-up study. Circulation, [S. l.], 2010. DOI: 10.1161/CIRCULATIONAHA.110.938852. KOLWICZ, Stephen C.; PUROHIT, Suneet; TIAN, Rong. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circulation Research, [S. l.], v. 113, n. 5, p. 603–616, 2013. DOI: 10.1161/CIRCRESAHA.113.302095. KUANG, Jujiao; MCGINLEY, Cian; LEE, Matthew J. C.; SANER, Nicholas J.; GARNHAM, Andrew; BISHOP, David J. Interpretation of exercise-induced changes in human skeletal muscle mRNA expression depends on the timing of the post-exercise biopsies. PeerJ, [S. l.], v. 10, n. 03, p. 1–44, 2022. DOI: 10.7717/peerj.12856. KURDI, Fauziah Nuraini; FLORA, Rostika. Physical exercise increased brain-derived neurotrophic factor in elderly population with depression. Open Access Macedonian Journal of Medical Sciences, [S. l.], 2019. DOI: 10.3889/oamjms.2019.574. KURDIOVA, Timea et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: In vivo and in vitro studies. Journal of Physiology, [S. l.], 2014. DOI: 10.1113/jphysiol.2013.264655. KURIAN, Gino A.; RAJAGOPAL, Rashmi; VEDANTHAM, Srinivasan; RAJESH, Mohanraj. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxidative Medicine and Cellular Longevity, 2016. DOI: 10.1155/2016/1656450. LASKE, Christoph et al. Exercise-induced normalization of decreased BDNF serum concentration in elderly women with remitted major depression. International Journal of Neuropsychopharmacology, [S. l.], 2010. DOI: 10.1017/S1461145709991234. LEBART, Marie Christine; BENYAMIN, Yves. Calpain involvement in the remodeling of cytoskeletal anchorage complexes. FEBS Journal, [S. l.], v. 273, n. 15, p. 3415–3426, 2006. DOI: 10.1111/j.1742-4658.2006.05350.x. LECKER, Stewart H.; ZAVIN, Alexandra; CAO, Peirang; ARENA, Ross; ALLSUP, Kelly; DANIELS, Karla M.; JOSEPH, Jacob; SCHULZE, P. Christian; FORMAN, Daniel E. Expression of the irisin precursor fndc5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circulation: Heart Failure, [S. l.], 2012. DOI: 10.1161/CIRCHEARTFAILURE.112.969543. 61 LEE, Hye Jeong et al. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Molecular Endocrinology, [S. l.], 2015. DOI: 10.1210/me.2014-1353. LEE, Paul et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metabolism, [S. l.], 2014. DOI: 10.1016/j.cmet.2013.12.017. LENNON, Shannon L.; QUINDRY, John; HAMILTON, Karyn L.; FRENCH, Joel; STAIB, Jessica; MEHTA, Jawahar L.; POWERS, Scott K. Loss of exercise-induced cardioprotection after cessation of exercise. Journal of Applied Physiology, [S. l.], 2004. DOI: 10.1152/japplphysiol.00920.2003. LEON, Benjamin M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World Journal of Diabetes, [S. l.], 2015. DOI: 10.4239/wjd.v6.i13.1246. LIANG, Huiyun; WARD, Walter F. Staying Current PGC-1: a key regulator of energy metabolism. Adv Physiol Educ, [S. l.], 2006. LIANG, Liwen et al. Calpain activation mediates microgravity-induced myocardial abnormalities in mice via p38 and ERK1/2 MAPK pathways. Journal of Biological Chemistry, [S. l.], v. 295, n. 49, p. 16840–16851, 2020. DOI: 10.1074/jbc.RA119.011890. Disponível em: http://dx.doi.org/10.1074/jbc.RA119.011890. LIRA, Vitor A.; BENTON, Carley R.; YAN, Zhen; BONEN, Arend. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, [S. l.], v. 299, n. 2, 2010. DOI: 10.1152/ajpendo.00755.2009. LITTLE, Jonathan P.; SAFDAR, Adeel; CERMAK, Naomi; TARNOPOLSKY, Mark A.; GIBALA, Martin J. Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, [S. l.], v. 298, n. 4, p. 912–917, 2010. DOI: 10.1152/ajpregu.00409.2009. LIU, Jiaqi; WANG, Haijuan; LI, Jun. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: A double-edged sword. Clinical Medicine Insights: Cardiology, [S. l.], v. 10, p. 79–84, 2016. DOI: 10.4137/CMC.S33164. LU, Yun et al. Swimming exercise increases serum irisin level and reduces body fat mass in highfat-diet fed Wistar rats. Lipids in Health and Disease, [S. l.], v. 15, n. 1, p. 1–8, 2016. DOI: 10.1186/s12944-016-0263-y. Disponível em: http://dx.doi.org/10.1186/s12944-016- 0263-y. 62 LUO, Yang; ZHENG, Song Guo. Hall of fame among pro-inflammatory cytokines: Interleukin- 6 gene and its transcriptional regulation mechanisms. Frontiers in Immunology, 2016. DOI: 10.3389/fimmu.2016.00604. LYNCH, M. A. Long-Term Potentiation and Memory. Physiological Reviews, 2004. DOI: 10.1152/physrev.00014.2003. MATTHEWS, V. B. et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, [S. l.], 2009. DOI: 10.1007/s00125-009-1364-1. MEI, Dan Feng; GU, An O.; WANG, Su; LENTZNER, Benjamin; GUTSTEIN, David E.; ZWAS, Donna; HOMMA, Shunichi; YI, Geng Hua; WANG, Jie. Exercise training normalizes altered calcium-handling proteins during development of heart failure. Journal of Applied Physiology, [S. l.], 2002. DOI: 10.1152/japplphysiol.00405.2001. MERRILL, G. F. et al. AICA riboside increases AMP-activated protein kinase , fatty acid oxidation , and glucose uptake in rat muscle. [S. l.], p. 1107–1112, 2007. MOHAMMADI, Mojgan; GOZASHTI, Mohammad Hossein; AGHADAVOOD, Majid; MEHDIZADEH, Mohammad Reza; HAYATBAKHSH, Mohammad Mahdi. Clinical significance of serum IL-6 and TNF-α levels in patients with metabolic syndrome. Reports of Biochemistry and Molecular Biology, [S. l.], 2017. MOLENDIJK, M. L.; BUS, B. A. A.; SPINHOVEN, Ph; PENNINX, B. W. J. H.; KENIS, G.; PRICKAERTS, J.; VOSHAAR, R. C. Oud.; ELZINGA, B. M. Serum levels of brain-derived neurotrophic factor in major depressive disorder: State-trait issues, clinical features and pharmacological treatment. Molecular Psychiatry, [S. l.], 2011. DOI: 10.1038/mp.2010.98. MOMENI, Hamid Reza. Role of calpain in apoptosis. Cell Journal, [S. l.], v. 13, n. 2, p. 65– 72, 2011. MOON, Hyun Seuk; DINCER, Fadime; MANTZOROS, Christos S. Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines. Metabolism: Clinical and Experimental, [S. l.], 2013. DOI: 10.1016/j.metabol.2013.04.007. MORAES, C.; LEAL, V. O.; MARINHO, S. M.; BARROSO, S. G.; ROCHA, G. S.; BOAVENTURA, G. T.; MAFRA, D. Resistance exercise training does not affect plasma irisin levels of hemodialysis patients. Hormone and Metabolic Research, [S. l.], 2013. DOI: 10.1055/s-0033-1354402. MORAES DE OLIVEIRA, Gláucia Maria et al. Cardiovascularstatistics–brazil 2020. Arquivos 63 Brasileiros de Cardiologia, [S. l.], 2020. DOI: 10.36660/abc.20200812. MOTA, Marcelo Mendonça; DA SILVA, Tharciano Luiz Teixeira Braga; MACEDO, Fabricio Nunes; MESQUITA, Thássio Ricardo Ribeiro; QUINTANS, Lucindo José; DE SANTANA-FILHO, Valter Joviniano; LAUTON-SANTOS, Sandra; SANTOS, Márcio Roberto Viana. Effects of a single bout of resistance exercise in different volumes on endothelium adaptations in healthy animals. Arquivos Brasileiros de Cardiologia, [S. l.], v. 108, n. 5, p. 436–442, 2017. DOI: 10.5935/abc.20170060. MURAWSKA-CIALOWICZ, Eugenia; WOLANSKI, Pawel; ZUWALA-JAGIELLO, Jolanta; FEITO, Yuri. Effect of HIIT with Tabata Protocol on Serum Irisin , Physical Performance, and Body Composition in Men. International Journal of Environmental Research and Public Health, [S. l.], v. 17, p. 1–15, 2020. DOI: 10.3390/ijerph17103589. NDREPEPA, Gjin et al. Relationship of left ventricular end-diastolic pressure with extent of myocardial ischemia, myocardial salvage and long-term outcome in patients with ST- segment elevation myocardial infarction. Catheterization and Cardiovascular Interventions, [S. l.], v. 93, n. 5, p. 901–909, 2019. DOI: 10.1002/ccd.28098. NEUHOF, Christiane. Calpain system and its involvement in myocardial ischemia and reperfusion injury. World Journal of Cardiology, [S. l.], 2014. DOI: 10.4330/wjc.v6.i7.638. NORHEIM, Frode et al. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS Journal, [S. l.], 2014. DOI: 10.1111/febs.12619. NYBO, Lars; NIELSEN, Bodil; PEDERSEN, Bente Klarlund; MØLLER, Kirsten; SECHER, Niels H. Interleukin-6 release from the human brain during prolonged exercise. Journal of Physiology, [S. l.], 2002. DOI: 10.1113/jphysiol.2002.022285. OGAWA, S.; GERLACH, H.; ESPOSITO, C.; PASAGIAN-MACAULAY, A.; BRETT, J.; STERN, D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. Journal of Clinical Investigation, [S. l.], 1990. DOI: 10.1172/JCI114540. OGAWA, S.; KOGA, S.; KUWABARA, K.; BRETT, J.; MORROW, B.; MORRIS, S. A.; BILEZIKIAN, J. P.; SILVERSTEIN, S. C.; STERN, D. Hypoxia-induced increased permeability of endothelial monolayers occurs through lowering of cellular cAMP levels. American Journal of Physiology - Cell Physiology, [S. l.], 1992. DOI: 10.1152/ajpcell.1992.262.3.c546. OLÁH, Attila et al. Complete Reversion of Cardiac Functional Adaptation Induced by Exercise 64 Training. Medicine and Science in Sports and Exercise, [S. l.], 2017. DOI: 10.1249/MSS.0000000000001127. OLIVETTI, Giorgio et al. Apoptosis in the Failing Human Heart. New England Journal of Medicine, [S. l.], v. 336, n. 16, p. 1131–1141, 1997. DOI: 10.1056/nejm199704173361603. OPIE, Lionel H. Role of calcium and other ions in reperfusion injury. Cardiovascular Drugs and Therapy, [S. l.], v. 5, n. 2 Supplement, p. 237–247, 1991. DOI: 10.1007/BF00054746. OTAKA, Naoya et al. Myonectin is an exercise-induced Myokine that protects the heart from ischemia-reperfusion injury. Circulation Research, [S. l.], 2018. DOI: 10.1161/CIRCRESAHA.118.313777. PAFFENBARGER, Ralph S.; WING, Alvin L.; HYDE, Robert T. Physical activity as an index of heart attack risk in college alumni. American Journal of Epidemiology, [S. l.], 1978. DOI: 10.1093/oxfordjournals.aje.a112608. PALASUBRAMANIAM, Jathushan; WANG, Xiaowei; PETER, Karlheinz. Myocardial Infarction—From Atherosclerosis to Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, [S. l.], 2019. DOI: 10.1161/atvbaha.119.312578. PARSONS, Bruce; SZCZESNA, Danuta; ZHAO, Jiaju; VAN SLOOTEN, Glen; KERRICK, W. Glenn L.; PUTKEY, John A.; POTTER, James D. The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres. Journal of Muscle Research and Cell Motility, [S. l.], v. 18, n. 5, p. 599–609, 1997. DOI: 10.1023/A:1018623604365. PEDERSEN, B. K.; STEENSBERG, A.; FISCHER, C.; KELLER, C.; KELLER, P.; PLOMGAARD, P.; FEBBRAIO, M.; SALTIN, B. Searching for the exercise factor: Is IL-6 a candidate? In: JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY 2003, Anais [...]. [s.l: s.n.] DOI: 10.1023/A:1026070911202. PEDERSEN, Bente Klarlund. Physical activity and muscle–brain crosstalk. Nature Reviews Endocrinology, 2019. DOI: 10.1038/s41574-019-0174-x. PEDERSEN, Bente Klarlund; ÅKERSTRÖM, Thorbjörn C. A.; NIELSEN, Anders R.; FISCHER, Christian P. Role of myokines in exercise and metabolism. Journal of Applied Physiology, 2007. DOI: 10.1152/japplphysiol.00080.2007. PEDERSEN, Bente Klarlund; STEENSBERG, Adam; SCHJERLING, Peter. Muscle-derived interleukin-6: Possible biological effects. Journal of Physiology, 2001. DOI: 10.1111/j.1469-7793.2001.0329c.xd. PEKKALA, Satu et al. Are skeletal muscle FNDC5 gene expression and irisin release regulated 65 by exercise and related to health? Journal of Physiology, [S. l.], v. 591, n. 21, p. 5393–5400, 2013. DOI: 10.1113/jphysiol.2013.263707. PENPARGKUL, S.; REPKE, D. I.; KATZ, A. M.; SCHEUER, J. Effect of physical training on calcium transport by rat cardiac sarcoplasmic reticulum. Circulation Research, [S. l.], v. 40, n. 2, p. 134–138, 1977. DOI: 10.1161/01.RES.40.2.134. PILEGAARD, Henriette; SALTIN, Bengt; NEUFER, Darrell P. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. Journal of Physiology, 2003. DOI: 10.1113/jphysiol.2002.034850. QIU, Shanhu; BOSNYÁK, Edit; TREFF, Gunnar; STEINACKER, Jürgen Michael; NIESS, Andreas Michael; KRÜGER, Karsten; MOOREN, Frank Christoph; ZÜGEL, Martina; SCHUMANN, Uwe. Acute exercise-induced irisin release in healthy adults: Associations with training status and exercise mode. European Journal of Sport Science, [S. l.], v. 18, n. 9, p. 1226–1233, 2018. DOI: 10.1080/17461391.2018.1478452. Disponível em: https://doi.org/10.1080/17461391.2018.1478452. RE, Richard N. Obesity-related hypertension. Ochsner Journal, 2009. REDEL, Andreas; JAZBUTYTE, Virginija; SMUL, Thorsten M.; LANGE, Markus; ECKLE, Tobias; ELTZSCHIG, Holger; ROEWER, Norbert; KEHL, Franz. Impact of ischemia and reperfusion times on myocardial infarct size in mice in vivo. Experimental Biology and Medicine, [S. l.], v. 233, n. 1, p. 84–93, 2008. DOI: 10.3181/0612-RM-308. REISI, Jalil; GHAEDI, Kamran; RAJABI, Hamid; MOHAMMAD MARANDI, Sayyed. Can resistance exercise alter irisin levels and expression profiles of fndc5 and ucp1 in rats? Asian Journal of Sports Medicine, [S. l.], v. 7, n. 4, 2016. DOI: 10.5812/asjsm.35205. RIEHLE, Christian et al. Insulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training. Molecular and Cellular Biology, [S. l.], 2014. DOI: 10.1128/mcb.00426-14. RIOUX, Brittany V.; BRUNT, Keith R.; EADIE, Ashley L.; BOUCHARD, Danielle R.; FOX, Jill; SÉNÉCHAL, Martin. Impact of acute circuit training on irisin in younger and older overweight adults. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme,[S. l.], v. 46, n. 10, p. 1248–1256, 2021. DOI: 10.1139/apnm-2020- 1087. ROTH, Gregory A. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, [S. l.], 2018. DOI: 10.1016/S0140- 66 6736(18)32203-7. RUAS, Jorge L. et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, [S. l.], 2012. DOI: 10.1016/j.cell.2012.10.050. SANCHIS-GOMAR, Fabian; LIPPI, Giuseppe; MAYERO, Sara; PEREZ-QUILIS, Carme; GARCÍA-GIMÉNEZ, José L. Irisin: A new potential hormonal target for the treatment of obesity and type 2 diabetes. Journal of Diabetes, 2012. DOI: 10.1111/j.1753- 0407.2012.00194.x. SCARBOROUGH, John; VAN DER EIJK, Philip J.; HANSON, Ann Ellis; ZIEGLER, Joseph. Studies in ancient medicine. Studies in Ancient Medicine, [S. l.], 2013. DOI: 10.1163/ej.9789004175631.i-172.70. SCHUETT, Katharina Andrea; LEHRKE, Michael; MARX, Nikolaus; BURGMAIER, Mathias. High-risk cardiovascular patients: Clinical features, comorbidities, and interconnecting mechanisms. Frontiers in Immunology, 2015. DOI: 10.3389/fimmu.2015.00591. SCHULTZ, William M. et al. Socioeconomic status and cardiovascular outcomes: Challenges and interventions. Circulation, [S. l.], 2018. DOI: 10.1161/CIRCULATIONAHA.117.029652. SERRANO, Antonio L.; BAEZA-RAJA, Bernat; PERDIGUERO, Eusebio; JARDÍ, Mercè; MUÑOZ-CÁNOVES, Pura. Interleukin-6 Is an Essential Regulator of Satellite Cell- Mediated Skeletal Muscle Hypertrophy. Cell Metabolism, [S. l.], 2008. DOI: 10.1016/j.cmet.2007.11.011. SINGH, Raja B.; CHOHAN, Punam K.; DHALLA, Naranjan S.; NETTICADAN, Thomas. The sarcoplasmic reticulum proteins are targets for calpain action in the ischemic-reperfused heart. Journal of Molecular and Cellular Cardiology, [S. l.], v. 37, n. 1, p. 101–110, 2004. DOI: 10.1016/j.yjmcc.2004.04.009. SIQUEIRA, Alessandra de Sá Earp; SIQUEIRA-FILHO, Aristarco Gonçalves De; LAND, Marcelo Gerardin Poirot. Analysis of the Economic Impact of Cardiovascular Diseases in the Last Five Years in Brazil. Arquivos Brasileiros de Cardiologia, [S. l.], 2017. DOI: 10.5935/abc.20170068. SONG, Mingke; YU, Shan Ping. Ionic Regulation of Cell Volume Changes and Cell Death after Ischemic Stroke. Translational Stroke Research, [S. l.], v. 5, n. 1, p. 17–27, 2014. DOI: 10.1007/s12975-013-0314-x. STEEL, Rohan; DOHERTY, Judith P.; BUZZARD, Katherine; CLEMONS, Nicholas; 67 HAWKINS, Christine J.; ANDERSON, Robin L. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. Journal of Biological Chemistry, [S. l.], 2004. DOI: 10.1074/jbc.M401314200. STEENBERGEN, C.; MURPHY, E.; WATTS, J. A.; LONDON, R. E. Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circulation Research, [S. l.], v. 66, n. 1, p. 135–146, 1990. DOI: 10.1161/01.RES.66.1.135. STEENSBERG, Adam; FEBBRAIO, Mark A.; OSADA, Takuya; SCHJERLING, Peter; VAN HALL, Gerrit; SALTIN, Bengt; PEDERSEN, Bente Klarlund. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. Journal of Physiology, [S. l.], 2001. DOI: 10.1111/j.1469-7793.2001.00633.x. STEPTO, Nigel K.; BENZIANE, Boubacar; WADLEY, Glenn D.; CHIBALIN, Alexander V.; CANNY, Benedict J.; EYNON, Nir; MCCONELL, Glenn K. Short-Term Intensified Cycle Training Alters Acute and Chronic Responses of PGC-1α and Cytochrome C Oxidase IV to Exercise in Human Skeletal Muscle. PLoS ONE, [S. l.], v. 7, n. 12, p. 1–11, 2012. DOI: 10.1371/journal.pone.0053080. STRAIN, Tessa; BRAGE, Søren; SHARP, Stephen J.; RICHARDS, Justin; TAINIO, Marko; DING, Ding; BENICHOU, Jacques; KELLY, Paul. Use of the prevented fraction for the population to determine deaths averted by existing prevalence of physical activity: a descriptive study. The Lancet Global Health, [S. l.], 2020. DOI: 10.1016/S2214- 109X(20)30211-4. SZUHANY, Kristin L.; BUGATTI, Matteo; OTTO, Michael W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of Psychiatric Research, 2015. DOI: 10.1016/j.jpsychires.2014.10.003. TADAISHI, Miki; MIURA, Shinji; KAI, Yuko; KAWASAKI, Emi; KOSHINAKA, Keiichi; KAWANAKA, Kentaro; NAGATA, Junichi; OISHI, Yuichi; EZAKI, Osamu. Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: A role of β2-adrenergic receptor activation. American Journal of Physiology - Endocrinology and Metabolism, [S. l.], v. 300, n. 2, 2011. DOI: 10.1152/ajpendo.00400.2010. TAO, Lichan et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cellular Physiology and Biochemistry, [S. l.], v. 37, n. 1, p. 162–175, 2015. DOI: 10.1159/000430342. 68 TAYLOR, Ryan P.; HARRIS, M. Brennan; STARNES, Joseph W. Acute exercise can improve cardioprotection without increasing heat shock protein content. American Journal of Physiology - Heart and Circulatory Physiology, [S. l.], 1999. DOI: 10.1152/ajpheart.1999.276.3.h1098. TORRES, Ricardo; KOUTAKIS, Panagiotis; FORSSE, Jeffrey. The Effects of Different Exercise Intensities and Modalities on Cortisol Production in Healthy Individuals: A Review. Journal of Exercise and Nutrition, [S. l.], v. 4, n. 4, 2021. DOI: 10.53520/jen2021.103108. TSIGOS, Constantine; KYROU, Ioannis; CHALA, Eftychia; TSAPOGAS, Panayotis; STAVRIDIS, John C.; RAPTIS, Sotirios A.; KATSILAMBROS, Nikolaos. Circulating tumor necrosis factor alpha concentrations are higher in abdominal versus peripheral obesity. Metabolism: Clinical and Experimental, [S. l.], 1999. DOI: 10.1016/S0026-0495(99)90277- 9. TSUCHIYA, Yoshifumi; ANDO, Daisuke; GOTO, Kazushige; KIUCHI, Masataka; YAMAKITA, Mitsuya; KOYAMA, Katsuhiro. High-intensity exercise causes greater irisin response compared with low-intensity exercise under similar energy consumption. Tohoku Journal of Experimental Medicine, [S. l.], 2014. DOI: 10.1620/tjem.233.135. TSUCHIYA, Yoshifumi; ANDO, Daisuke; TAKAMATSU, Kaoru; GOTO, Kazushige. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism: Clinical and Experimental, [S. l.], v. 64, n. 9, p. 1042–1050, 2015. DOI: 10.1016/j.metabol.2015.05.010. Disponível em: http://dx.doi.org/10.1016/j.metabol.2015.05.010. VARGAS-ORTIZ, Katya; PEREZ-VAZQUEZ, Victoriano; DIAZ-CISNEROS, Francisco J.; FIGUEROA, Arturo; JIMÉNEZ-FLORES, Lizbeth M.; RODRIGUEZ-DELAROSA, Gustavo; MACIAS, Maciste H. Aerobic training increases expression levels of SIRT3 and PGC-1α in skeletal muscle of overweight adolescents without change in caloric intake. Pediatric Exercise Science, [S. l.], 2015. DOI: 10.1123/pes.2014-0112. VEGA, Rick B.; KONHILAS, John P.; KELLY, Daniel P.; LEINWAND, Leslie A. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metabolism, [S. l.], v. 25, n. 5, p. 1012–1026, 2017. DOI: 10.1016/j.cmet.2017.04.025. Disponível em: http://dx.doi.org/10.1016/j.cmet.2017.04.025. VEIGA, Eduardo C. A.; ANTONIO, Ednei L.; BOCALINI, Danilo S.; MURAD, Neif; ABREU, Luiz C.; TUCCI, Paulo J. F.; SATO, Monica A. Prior exercise training does not 69 prevent acute cardiac alterations after myocardial infarction in female rats. Clinics, [S. l.], v. 66, n. 5, p. 889–893, 2011. DOI: 10.1590/S1807-59322011000500028. VOJÁČEK, Jan; JANSKÝ, Petr; JANOTA, Tomáš. Third universal definition of myocardial infarction. Cor et Vasa, [S. l.], v. 55, n. 3, p. 228–235, 2013. DOI: 10.1016/j.crvasa.2012.12.004. WALLENIUS, Ville; WALLENIUS, Kristina; AHRÉN, Bo; RUDLING, Mats; CARLSTEN, Hans; DICKSON, Suzanne L.; OHLSSON, Claes; JANSSON, John Olov. Interleukin-6- deficient mice develop mature-onset obesity. Nature Medicine, [S. l.], 2002. DOI: 10.1038/nm0102-75. WANG, Hao et al. Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury. Journal of Cellular Physiology, [S. l.], 2017. DOI: 10.1002/jcp.25857. WANG, Zhen et al. Irisin protects heart against ischemia-reperfusion injury through a SOD2- dependent mitochondria mechanism. Journal of Cardiovascular Pharmacology, [S. l.], 2018. DOI: 10.1097/FJC.0000000000000608. WARING, Cheryl D.; HENNING, Beverley J.; SMITH, Andrew J.; NADAL-GINARD, Bernardo; TORELLA, Daniele; ELLISON, Georgina M. Cardiac adaptations from 4 weeks of intensity-controlled vigorous exercise are lost after a similar period of detraining. Physiological Reports, [S. l.], 2015. DOI: 10.14814/phy2.12302. WEBER, Heike; HÜHNS, Saskia; LÜTHEN, Frank; JONAS, Ludwig. Calpain-mediated breakdown of cytoskeletal proteins contributes to cholecystokinin-induced damage of rat pancreatic acini. International Journal of Experimental Pathology, [S. l.], v. 90, n. 4, p. 387– 399, 2009. DOI: 10.1111/j.1365-2613.2009.00638.x. WENGROWSKI, Anastasia M.; KUZMIAK-GLANCY, Sarah; JAIMES, Rafael; KAY, Matthew W. NADH changes during hypoxia, ischemia, and increased work differ between isolated heart preparations. American Journal of Physiology - Heart and Circulatory Physiology, 2014. DOI: 10.1152/ajpheart.00696.2013. WHITE, Ian. Sample Size Calculations in Clinical Research. Journal of the Royal Statistical Society: Series A (Statistics in Society), [S. l.], 2008. DOI: 10.1111/j.1467- 985x.2008.00538_2.x. WHO. Global action plan for the prevention and control of noncommunicable diseases 2013- 2020. World Health Organization, [S. l.], 2013. DOI: 978 92 4 1506236. WINN, Nathan C.; GRUNEWALD, Zachary I.; LIU, Ying; HEDEN, Timothy D.; NYHOFF, Lauren M.; KANALEY, Jill A. Plasma irisin modestly increases during moderate and high- 70 intensity afternoon exercise in obese females. PLoS ONE, [S. l.], v. 12, n. 1, p. 1–12, 2017. DOI: 10.1371/journal.pone.0170690. WOLFF, Andrew A.; ROTMENSCH, Heschi H.; STANLEY, William C.; FERRARI, Roberto. Metabolic approaches to the treatment of ischemic heart disease: The clinicians’ perspective. Heart Failure Reviews, [S. l.], v. 7, n. 2, p. 187–203, 2002. DOI: 10.1023/A:1015384710373. WOLSK, Emil; MYGIND, Helene; GRØNDAHL, Thomas S.; PEDERSEN, Bente K.; VAN HALL, Gerrit. IL-6 selectively stimulates fat metabolism in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, [S. l.], 2010. DOI: 10.1152/ajpendo.00328.2010. WORLD HEALTH ORGANIZATION. WHO - The top 10 causes of death. 2018a. WORLD HEALTH ORGANIZATION. Global Health Estimates 2018: Disease burden by Cause, Sex, by Country and Region, 2000-2016. World Health Organization, [S. l.], 2018. b. WRANN, Christiane D.; WHITE, James P.; SALOGIANNNIS, John; LAZNIK- BOGOSLAVSKI, Dina; WU, Jun; MA, Di; LIN, Jiandie D.; GREENBERG, Michael E.; SPIEGELMAN, Bruce M. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism, [S. l.], 2013. DOI: 10.1016/j.cmet.2013.09.008. WRIGHT, David C.; HAN, Dong Ho; GARCIA-ROVES, Pablo M.; GEIGER, Paige C.; JONES, Terry E.; HOLLOSZY, John O. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression. Journal of Biological Chemistry, [S. l.], v. 282, n. 1, p. 194–199, 2007. DOI: 10.1074/jbc.M606116200. Disponível em: http://dx.doi.org/10.1074/jbc.M606116200. WU, Liquan; XIONG, Xiaoxing; WU, Xiaomin; YE, Yingze; JIAN, Zhihong; ZHI, Zeng; GU, Lijuan. Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Frontiers in Molecular Neuroscience, [S. l.], 2020. DOI: 10.3389/fnmol.2020.00028. WU, Meng Yu; YIANG, Giou Teng; LIAO, Wan Ting; TSAI, Andy Po Yi; CHENG, Yeung Leung; CHENG, Pei Wen; LI, Chia Ying; LI, Chia Jung. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cellular Physiology and Biochemistry, 2018. DOI: 10.1159/000489241. XIE, Chao et al. Irisin controls growth, intracellular Ca2+ signals, and mitochondrial thermogenesis in cardiomyoblasts. PLoS ONE, [S. l.], 2015. DOI: 10.1371/journal.pone.0136816. 71 XIN, C. et al. Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. International Journal of Obesity, [S. l.], 2016. DOI: 10.1038/ijo.2015.199. YAMASHITA, N.; BAXTER, G. F.; YELLON, D. M. Exercise directly enhances myocardial tolerance to ischaemia-reperfusion injury in the rat through a protein kinase C mediated mechanism. Heart, [S. l.], v. 85, n. 3, p. 331–336, 2001. DOI: 10.1136/heart.85.3.331. YAMASHITA, Nobushige; HOSHIDA, Shiro; OTSU, Kinya; ASAHI, Michio; KUZUYA, Tsunehiko; HORI, Masatsugu. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. Journal of Experimental Medicine, [S. l.], v. 189, n. 11, p. 1699–1706, 1999. DOI: 10.1084/jem.189.11.1699. YAZDANYAR, Ali; NEWMAN, Anne B. The Burden of Cardiovascular Disease in the Elderly: Morbidity, Mortality, and Costs. Clinics in Geriatric Medicine, 2009. DOI: 10.1016/j.cger.2009.07.007. ZANCHETTA, Luane Margarete; BARROS, Marilisa Berti de Azevedo; CÉSAR, Chester Luiz Galvão; CARANDINA, Luana; GOLDBAUM, Moisés; ALVES, Maria Cecília Goi Porto. Physical inactivity and associated factors in adults, São Paulo, Brazil. Revista Brasileira de Epidemiologia, [S. l.], 2010. DOI: 10.1590/S1415-790X2010000300003. ZHANG, Yuzhu et al. Irisin Inhibits Atherosclerosis by Promoting Endothelial Proliferation Through microRNA126-5p. Journal of the American Heart Association, [S. l.], 2016. DOI: 10.1161/JAHA.116.004031. ZHAO, Yu Tina et al. Irisin promotes cardiac progenitor cell-induced myocardial repair and functional improvement in infarcted heart. Journal of Cellular Physiology, [S. l.], 2019. DOI: 10.1002/jcp.27037. ZHOU, Xin; XU, Mengmeng; BRYANT, Joseph L.; MA, Jianjie; XU, Xuehong. Exercise- induced myokine FNDC5/irisin functions in cardiovascular protection and intracerebral retrieval of synaptic plasticity. Cell and Bioscience, [S. l.], 2019. DOI: 10.1186/s13578-019- 0294-y. ZHU, Ning; YAN, Xue; LI, Hongli. Clinical significance of serum pgc-1 alpha levels in diabetes mellitus with myocardial infarction patients and reduced ros-oxidative stress in diabetes mellitus with myocardial infarction model. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, [S. l.], 2020. DOI: 10.2147/DMSO.S276163.https://tede.ufrrj.br/retrieve/74787/2022%20-%20Lucas%20Monteiro%20de%20Carvalho.Pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6927Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-19T14:46:29Z No. of bitstreams: 1 2022 - Lucas Monteiro de Carvalho.Pdf: 1353175 bytes, checksum: 7118a01b0df5f38d6776d273392b3a3a (MD5)Made available in DSpace on 2023-09-19T14:46:29Z (GMT). No. of bitstreams: 1 2022 - Lucas Monteiro de Carvalho.Pdf: 1353175 bytes, checksum: 7118a01b0df5f38d6776d273392b3a3a (MD5) Previous issue date: 2022-08-29info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2022 - Lucas Monteiro de Carvalho.Pdf.jpgGenerated Thumbnailimage/jpeg2101https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11404/1/2022%20-%20Lucas%20Monteiro%20de%20Carvalho.Pdf.jpgecb266d8b2274c4ebf9d822bce6e9bdfMD51TEXT2022 - Lucas Monteiro de Carvalho.Pdf.txtExtracted Texttext/plain165976https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11404/2/2022%20-%20Lucas%20Monteiro%20de%20Carvalho.Pdf.txt7d123366b22cd6f737bc58ae5c7f7216MD52ORIGINAL2022 - Lucas Monteiro de Carvalho.Pdf2022 - Lucas Monteiro de Carvalhoapplication/pdf1353175https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11404/3/2022%20-%20Lucas%20Monteiro%20de%20Carvalho.Pdf7118a01b0df5f38d6776d273392b3a3aMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11404/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/114042023-12-21 22:52:19.307oai:rima.ufrrj.br:20.500.14407/11404Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:52:19Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores
dc.title.alternative.eng.fl_str_mv Acute effect of resistance training on irisin, PGC-1α expression and cardioprotection on rodents
title Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores
spellingShingle Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores
Carvalho, Lucas Monteiro de
Treinamento Resistido
FNDC5
Isquemia
Reperfusão
Resistance Training
FNDC5
Ischemia
Reperfusion
Fisiologia
title_short Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores
title_full Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores
title_fullStr Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores
title_full_unstemmed Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores
title_sort Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores
author Carvalho, Lucas Monteiro de
author_facet Carvalho, Lucas Monteiro de
author_role author
dc.contributor.author.fl_str_mv Carvalho, Lucas Monteiro de
dc.contributor.advisor1.fl_str_mv Silveira, Anderson Luiz Bezerra da
dc.contributor.advisor1ID.fl_str_mv 078.828.167-44
https://orcid.org/0000-0002-0862-5094
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2389812933788850
dc.contributor.referee1.fl_str_mv Silveira, Anderson Luiz Bezerra da
dc.contributor.referee1ID.fl_str_mv 078.828.167-44
https://orcid.org/0000-0002-0862-5094
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2389812933788850
dc.contributor.referee2.fl_str_mv Olivares, Emerson Lopes
dc.contributor.referee2ID.fl_str_mv 027.886.707-37
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1361659701207857
dc.contributor.referee3.fl_str_mv Souza, Luciane Claudia Barcellos dos Santos
dc.contributor.referee3ID.fl_str_mv 013.582.027-88
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4338421078241207
dc.contributor.authorID.fl_str_mv 151.907.467-04
contributor_str_mv Silveira, Anderson Luiz Bezerra da
Silveira, Anderson Luiz Bezerra da
Olivares, Emerson Lopes
Souza, Luciane Claudia Barcellos dos Santos
dc.subject.por.fl_str_mv Treinamento Resistido
FNDC5
Isquemia
Reperfusão
topic Treinamento Resistido
FNDC5
Isquemia
Reperfusão
Resistance Training
FNDC5
Ischemia
Reperfusion
Fisiologia
dc.subject.eng.fl_str_mv Resistance Training
FNDC5
Ischemia
Reperfusion
dc.subject.cnpq.fl_str_mv Fisiologia
description A irisina é um peptídeo descoberto em 2012 com funções importantes sobre a homeostase dos mais diversos tecidos biológicos. Sua ação endócrina foi estudada em tecido adiposo, neurônios e cardiomiócitos. Entretanto, pouco se sabe a respeito dos efeitos da irisina induzida pelo treinamento resistido sobre a cardioproteção de roedores. Com isso, o objetivo do presente estudo é investigar o efeito agudo de uma sessão de treinamento resistido sobre os níveis de irisina e cardioproteção em roedores. Ratos wistar machos foram submetidos a 1 sessão de treinamento resistido de escadaria e a cardioproteção foi avaliada após 30 minutos de isquemia e 60 minutos de reperfusão no Langendorff. A irisina e a PGC-1α foram avaliadas no músculo esquelético e coração. Os resultados demonstram que 1 sessão de treinamento resistido não gerou alterações significativamente estatísticas nos parâmetros PDVE, PDFVE, +dP/dt, -dP/dt e área de infarto, embora o effect size para PDFVE seja 0.81, sugerindo melhorias no parâmetro. A irisina no músculo e coração não apresentou diferenças estatísticas embora o effect size da irisina cardíaca seja 0.69. Já para a PGC-1α, notou-se redução estatisticamente significativa no músculo esquelético. Em conclusão, os resultados demonstram que em resposta a 1 sessão de treino resistido não houve cardioproteção, embora os mecanismos cardioprotetores possivelmente tenham iniciado, evidenciados pelos valores de PDFVE. E quanto aos níveis de irisina, não há alteração tecidual imediatamente após a sessão e a alta intensidade do treinamento reduziu os níveis de PGC-1α no músculo
publishDate 2022
dc.date.issued.fl_str_mv 2022-08-29
dc.date.accessioned.fl_str_mv 2023-12-22T01:52:19Z
dc.date.available.fl_str_mv 2023-12-22T01:52:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARVALHO, Lucas Monteiro de. Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores. 2022. 74 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/11404
identifier_str_mv CARVALHO, Lucas Monteiro de. Efeito agudo do treinamento resistido sobre as expressões de irisina, PGC-1α e cardioproteção em roedores. 2022. 74 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/11404
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AGUER, Céline et al. Circulating Irisin and Myostatin as Markers of Muscle Strength and Physical Condition in Elderly Subjects. Frontiers in Physiology, v. 1, p. 871, 2019. DOI: 10.3389/fphys.2019.00871. Disponível em: www.frontiersin.org. AHA. Cardiovascular Disease: A costly burden for America, projections 2035. Journal of American Heart Ass, [S. l.], 2017. AL-GOBLAN, Abdullah S.; AL-ALFI, Mohammed A.; KHAN, Muhammad Z. Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, [S. l.], 2014. DOI: 10.2147/DMSO.S67400. ALDAKKAK, Mohammed; STOWE, David F.; HEISNER, James S.; SPENCE, Marisha; CAMARA, Amadou K. S. Enhanced Na +/H + exchange during ischemia and reperfusion impairs mitochondrial bioenergetics and myocardial function. Journal of Cardiovascular Pharmacology, v. 52, n. 3, p. 236–244, 2008. DOI: 10.1097/FJC.0b013e3181831337. ALVES, Jadson P.; NUNES, Ramiro B.; STEFANI, Giuseppe P.; DAL LAGO, Pedro. Resistance training improves hemodynamic function, collagen deposition and inflammatory profiles: Experimental model of heart failure. PLoS ONE, v. 9, n. 10, 2014. DOI: 10.1371/journal.pone.0110317. AMANAKIS, Georgios; MURPHY, Elizabeth. Cyclophilin D: An Integrator of Mitochondrial Function. Frontiers in Physiology, [S. l.], v. 11, n. June, p. 1–6, 2020. DOI: 10.3389/fphys.2020.00595. AMANAT, Sasan; SINAEI, Ehsan; PANJI, Mohammad; MOHAMMADPORHODKI, Reza; BAGHERI-HOSSEINABADI, Zahra; ASADIMEHR, Hadis; FARAROUEI, Mohammad; DIANATINASAB, Aria. A Randomized Controlled Trial on the Effects of 12 Weeks of Aerobic, Resistance, and Combined Exercises Training on the Serum Levels of Nesfatin-1, Irisin-1 and HOMA-IR. Frontiers in Physiology, v. 11, n. 12, p. 1–14, 2020. DOI: 10.3389/fphys.2020.562895. ANASTASILAKIS, Athanasios D. et al. Circulating irisin in healthy, young individuals: Day- night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. Journal of Clinical Endocrinology and Metabolism, [S. l.], v. 99, n. 9, p. 3247–3255, 2014. DOI: 10.1210/jc.2014-1367. ANTMAN, Elliott M. et al. 2007 Focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association task force on practice guidelines. 50 Circulation, v. 117, n. 2, p. 296–329, 2008. DOI: 10.1161/CIRCULATIONAHA.107.188209. ARANCIBIA, S.; SILHOL, M.; MOULIÈRE, F.; MEFFRE, J.; HÖLLINGER, I.; MAURICE, T.; TAPIA-ARANCIBIA, L. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiology of Disease, [S. l.], 2008. DOI: 10.1016/j.nbd.2008.05.012. ARBAB-ZADEH, Armin; DIJK, Erika; PRASAD, Anand; FU, Qi; TORRES, Pilar; ZHANG, Rong; THOMAS, James D.; PALMER, Dean; LEVINE, Benjamin D. Effect of aging and physical activity on left ventricular compliance. Circulation, [S. l.], v. 110, n. 13, p. 1799– 1805, 2004. DOI: 10.1161/01.CIR.0000142863.71285.74. ARBEX, Alberto Krayyem; ROCHA, Denise R. T. W.; AIZENBERG, Marisa; CIRUZZI, Maria S. Obesity epidemic in Brazil and Argentina: A public health concern. Journal of Health, Population and Nutrition, [S. l.], 2014. DOI: 10.3329/jhpn.v32i2.2626. ARCHUNDIA-HERRERA, Carolina; MACIAS-CERVANTES, MacIste; RUIZ-MUÑOZ, Bernardo; VARGAS-ORTIZ, Katya; KORNHAUSER, Carlos; PEREZ-VAZQUEZ, Victoriano. Muscle irisin response to aerobic vs HIIT in overweight female adolescents Fred DiMenna. Diabetology and Metabolic Syndrome, [S. l.], v. 9, n. 1, p. 5–11, 2017. DOI: 10.1186/s13098-017-0302-5. Disponível em: https://doi.org/10.1186/s13098-017-0302-5. ARHIRE, Lidia I.; MIHALACHE, Laura; COVASA, Mihai. Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome. Frontiers in Endocrinology, [S. l.], 2019. DOI: 10.3389/fendo.2019.00524. ARYAPPALLI, Priyanka et al. The IL-6/STAT3 signaling pathway is an early target of manuka honey-induced suppression of human breast cancer cells. Frontiers in Oncology, [S. l.], 2017. DOI: 10.3389/fonc.2017.00167. ASADI, Yasin; GORJIPOUR, Fazel; BEHROUZIFAR, Sedigheh; VAKILI, Abedin. Irisin Peptide Protects Brain Against Ischemic Injury Through Reducing Apoptosis and Enhancing BDNF in a Rodent Model of Stroke. Neurochemical Research, [S. l.], 2018. DOI: 10.1007/s11064-018-2569-9. ASKARI, Hassan; RAJANI, Sulail Fatima; POOREBRAHIM, Mansour; HAGHI-AMINJAN, Hamed; RAEIS-ABDOLLAHI, Ehsan; ABDOLLAHI, Mohammad. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharmacological Research, 2018. DOI: 10.1016/j.phrs.2018.01.012. 51 AYDIN, Suna et al. Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: Cardiac muscle produces more irisin than skeletal muscle. Peptides, [S. l.], 2014. DOI: 10.1016/j.peptides.2013.11.024. BANKS, W. A.; KASTIN, A. J.; BROADWELL, R. D. Passage of cytokines across the blood- brain barrier. NeuroImmunoModulation, 1995. DOI: 10.1159/000097202. BAO, Pengli; LIU, Geli; WEI, Ying. Association between IL-6 and related risk factors of metabolic syndrome and cardiovascular disease in young rats. International Journal of Clinical and Experimental Medicine, [S. l.], 2015. BEVINGTON, A.; BROWN,J.; PRATT, A.; MESSER,J.; WALLS, J. Impaired glycolysis and protein catabolism induced by acid in L6 rat muscle cells. European Journal of Clinical Investigation, [S. l.], v. 28, n. 11, p. 908–917, 1998. DOI: 10.1046/j.1365- 2362.1998.00382.x. BI, Jianbin et al. Irisin alleviates liver ischemia-reperfusion injury by inhibiting excessive mitochondrial fission, promoting mitochondrial biogenesis and decreasing oxidative stress. Redox Biology, [S. l.], v. 20, n. July 2018, p. 296–306, 2019. DOI: 10.1016/j.redox.2018.10.019. BLIZZARD LEBLANC, Devin R.; RIOUX, Brittany V.; PELECH, Cody; MOFFATT, Teri L.; KIMBER, Dustin E.; DUHAMEL, Todd A.; DOLINSKY, Vernon W.; MCGAVOCK, Jonathan M.; SENECHAL, Martin. Exercise-induced irisin release as a determinant of the metabolic response to exercise training in obese youth: The exit trial. Physiological Reports, [S. l.], v. 5, n. 23, p. 1–11, 2017. DOI: 10.14814/phy2.13539. BOSTRÖM, Pontus et al. A PGC1a dependent myokine that derives browning of white fat and thermogenesis. Nature, [S. l.], 2012. DOI: 10.1038/nature10777.A. BRAILOIU, Eugen; DELIU, Elena; SPORICI, Romeo A.; BRAILOIU, G. Cristina. Irisin evokes bradycardia by activating cardiac-projecting neurons of nucleus ambiguus. Physiological Reports, [S. l.], 2015. DOI: 10.14814/phy2.12419. BRIKEN, Sven et al. Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. Journal of Neuroimmunology, [S. l.], v. 299, p. 53–58, 2016. DOI: 10.1016/j.jneuroim.2016.08.007. Disponível em: http://dx.doi.org/10.1016/j.jneuroim.2016.08.007. BROWN, David A.; MOORE, Russell L. Perspectives in innate and acquired cardioprotection: Cardioprotection acquired through exercise. Journal of Applied Physiology, [S. l.], v. 103, n. 5, p. 1894–1899, 2007. DOI: 10.1152/japplphysiol.00464.2007. 52 BRUUNSGAARD, H.; GALBO, H.; HALKJAER-KRISTENSEN, J.; JOHANSEN, T. L.; MACLEAN, D. A.; PEDERSEN, B. K. Exercise-induced increase in serum inferleukin-6 in humans is related to muscle damage. Journal of Physiology, [S. l.], 1997. DOI: 10.1113/jphysiol.1997.sp021972. BRUUNSGAARD, Helle; LADELUND, S.; PEDERSEN, A. N.; SCHROLL, M.; JØRGENSEN, T.; PEDERSEN, B. K. Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clinical and Experimental Immunology, [S. l.], 2003. DOI: 10.1046/j.1365-2249.2003.02137.x. BURELLE, Yan et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart. American Journal of Physiology - Heart and Circulatory Physiology, [S. l.], 2004. DOI: 10.1152/ajpheart.00925.2003. CAREY, Andrew L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes, [S. l.], 2006. DOI: 10.2337/db05-1404. CHAKRAVORTY, Srabasti J.; HOWIE, Alexander J.; GIRDLESTONE, John; GENTLE, Dean; SAVAGE, Caroline O. S. Nerve growth factor and brain-derived neurotrophic factor mRNAs are regulated in distinct cell populations of rat heart after ischaemia and reperfusion. Journal of Pathology, [S. l.], 2001. DOI: 10.1002/path.878. CHEN, Grace Y.; NUÑEZ, Gabriel. Sterile inflammation: Sensing and reacting to damage. Nature Reviews Immunology, [S. l.], v. 10, n. 12, p. 826–837, 2010. DOI: 10.1038/nri2873. CHEN, Ken et al. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Science Translational Medicine, [S. l.], 2017. DOI: 10.1126/scitranslmed.aao6298. CHOOI, Yu Chung; DING, Cherlyn; MAGKOS, Faidon. The epidemiology of obesity. Metabolism: Clinical and Experimental, [S. l.], 2019. DOI: 10.1016/j.metabol.2018.09.005. CICERO, Arrigo F. G.; D’ADDATO, Sergio; SANTI, Francesca; FERRONI, Alienor; BORGHI, Claudio. Leisure-time physical activity and cardiovascular disease mortality: The Brisighella Heart Study. Journal of Cardiovascular Medicine, [S. l.], 2012. DOI: 10.2459/JCM.0b013e3283516798. CLAUSEN, Johan S. R.; MAROTT, Jacob L.; HOLTERMANN, Andreas; GYNTELBERG, Finn; JENSEN, Magnus T. Midlife Cardiorespiratory Fitness and the Long-Term Risk of Mortality: 46 Years of Follow-Up. Journal of the American College of Cardiology, [S. l.], 2018. DOI: 10.1016/j.jacc.2018.06.045. 53 COHEN, Harvey Jay; PIEPER, Carl F.; HARRIS, Tamara; RAO, K. Murali K.; CURRIE, Mark S. The association of plasma IL-6 levels with functional disability in community-dwelling elderly. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, [S. l.], 1997. DOI: 10.1093/gerona/52A.4.M201. COLETTA, Adriana M. et al. The impact of high-intensity interval exercise training on NK- cell function and circulating myokines for breast cancer prevention among women at high risk for breast cancer. Breast Cancer Research and Treatment, [S. l.], v. 187, n. 2, p. 407– 416, 2021. DOI: 10.1007/s10549-021-06111-z. Disponível em: https://doi.org/10.1007/s10549-021-06111-z. COLPITTS, Benjamin H.; RIOUX, Brittany V.; EADIE, Ashley L.; BRUNT, Keith R.; SÉNÉCHAL, Martin. Irisin response to acute moderate intensity exercise and high intensity interval training in youth of different obesity statuses: A randomized crossover trial. Physiological Reports, [S. l.], v. 10, n. 4, p. 1–12, 2022. DOI: 10.14814/phy2.15198. COSIO, Pedro L.; CRESPO-POSADAS, Manuel; VELARDE-SOTRES, Álvaro; PELAEZ, Mireia. Effect of chronic resistance training on circulating irisin: Systematic review and meta-analysis of randomized controlled trials. International Journal of Environmental Research and Public Health, [S. l.], v. 18, n. 5, p. 1–16, 2021. DOI: 10.3390/ijerph18052476. DASKALOPOULOU, Stella S.; COOKE, Alexandra B.; GOMEZ, Yessica Haydee; MUTTER, Andrew F.; FILIPPAIOS, Andreas; MESFUM, Ertirea T.; MANTZOROS, Christos S. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. European Journal of Endocrinology, [S. l.], 2014. DOI: 10.1530/EJE-14-0204. DE LA ROSA, Adrián; SOLANA, Elisabeth; CORPAS, Rubén; BARTRÉS-FAZ, David; PALLÀS, Mercè; VINA, Jose; SANFELIU, Coral; GOMEZ-CABRERA, Mari Carmen. Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B. Scientific Reports, [S. l.], 2019. DOI: 10.1038/s41598-019-40040-8 DEMIREL, Haydar A.; POWERS, Scott K.; ZERGEROGLU, Murat A.; SHANELY, R. Andrew; HAMILTON, Karyn; COOMBES, Jeff; NAITO, Hisashi. Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Journal of Applied Physiology, [S. l.], 2001. DOI: 10.1152/jappl.2001.91.5.2205. DIANATINASAB, Aria; KORONI, Roghayeh; BAHRAMIAN, Mehrdad; BAGHERI- 54 HOSSEINABADI, Zahra; VAISMORADI, Mojtaba; FARAROUEI, Mohammad; AMANAT, Sasan. The effects of aerobic, resistance, and combined exercises on the plasma irisin levels, HOMA-IR, and lipid profiles in women with metabolic syndrome: A randomized controlled trial. Journal of Exercise Science and Fitness, [S. l.], v. 18, n. 3, p. 168–176, 2020. DOI: 10.1016/j.jesf.2020.06.004. Disponível em: https://doi.org/10.1016/j.jesf.2020.06.004. DOMENECH, Raúl; MACHO, Pilar; SCHWARZE, Hermann; SÁNCHEZ, Gina. Exercise induces early and late myocardial preconditioning in dogs. Cardiovascular Research, [S. l.], v. 55, n. 3, p. 561–566, 2002. DOI: 10.1016/S0008-6363(02)00334-6. DONOVAN, M. J. et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development, [S. l.], 2000. DOI: 10.1242/dev.127.21.4531. DWIVEDI, Yogesh; RIZAVI, Hooriyah S.; CONLEY, Robert R.; ROBERTS, Rosalinda C.; TAMMINGA, Carol A.; PANDEY, Ghanshyam N. Altered gene expression of brain- derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Archives of General Psychiatry, [S. l.], 2003. DOI: 10.1001/archpsyc.60.8.804. EATON, Malcolm; GRANATA, Cesare; BARRY, Julianne; SAFDAR, Adeel; BISHOP, David; LITTLE, Jonathan P. Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle. Journal of Sport and Health Science, [S. l.], v. 7, n. 2, p. 191–196, 2018. DOI: 10.1016/j.jshs.2017.01.003. Disponível em: https://doi.org/10.1016/j.jshs.2017.01.003. EDGETT, Brittany A.; FOSTER, William S.; HANKINSON, Paul B.; SIMPSON, Craig A.; LITTLE, Jonathan P.; GRAHAM, Ryan B.; GURD, Brendon J. Dissociation of Increases in PGC-1α and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise. PLoS ONE, [S. l.], v. 8, n. 8, 2013. DOI: 10.1371/journal.pone.0071623. EGAN, Brendan; ZIERATH, Juleen R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, [S. l.], v. 17, n. 2, p. 162–184, 2013. DOI: 10.1016/j.cmet.2012.12.012. Disponível em: http://dx.doi.org/10.1016/j.cmet.2012.12.012. ELEFTHERIADIS, Theodoros; PISSAS, Georgios; LIAKOPOULOS, Vassilios; STEFANIDIS, Ioannis. Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Frontiers in Immunology, [S. l.], v. 7, n. JUL, p. 1–5, 2016. DOI: 10.3389/fimmu.2016.00279. 55 ELTZSCHIG, Holger K.; ECKLE, Tobias. Ischemia and reperfusion-from mechanism to translation. Nature Medicine, [S. l.], v. 17, n. 11, p. 1391–1401, 2011. DOI: 10.1038/nm.2507. ESGALHADO, Marta Gormicho Boavida Marques; STOCKLER-PINTO, Milena Barcza; CARDOZO, Ludmila Ferreira Medeiros de França; BARBOZA, Jorge Eduardo; MAFRA, Denise. Does high intensity exercise affects irisin plasma levels in hemodialysis patients? A pilot study. Jornal brasileiro de nefrologia : ’orgao oficial de Sociedades Brasileira e Latino-Americana de Nefrologia, [S. l.], v. 40, n. 1, p. 53–58, 2018. DOI: 10.1590/1678- 4685-JBN-3802. FEBBRAIO, Mark A.; HISCOCK, Natalie; SACCHETTI, Massimo; FISCHER, Christian P.; PEDERSEN, Bente K. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes, [S. l.], 2004. DOI: 10.2337/diabetes.53.7.1643. FERNANDES, A. A. et al. A single resistance exercise session improves myocardial contractility in spontaneously hypertensive rats. Brazilian Journal of Medical and Biological Research, [S. l.], v. 48, n. 9, p. 813–821, 2015. DOI: 10.1590/1414-431X20154355. FERNANDO, Maria Ruweka; REYES, Jose Luis; IANNUZZI, Jordan; LEUNG, Gabriella; MCKAY, Derek Mark. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS ONE, [S. l.], 2014. DOI: 10.1371/journal.pone.0094188. FIGUROV, Alexander; POZZO-MILLER, Lucas D.; OLAFSSON, Petur; WANG, Ti; LU, Bai. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, [S. l.], 1996. DOI: 10.1038/381706a0 FRANK, Anja; BONNEY, Megan; BONNEY, Stephanie; WEITZEL, Lindsay; PH, D.; KOEPPEN, Michael; ECKLE, Tobias. Myocardial ischemia reperfusion injury - from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth, [S. l.], p. 1–18, 2012. DOI: 10.1177/1089253211436350.Myocardial. FRENCH, Joel P.; HAMILTON, Karyn L.; QUINDRY, John C.; LEE, Youngil; UPCHURCH, Patrick A.; POWERS, Scott K. Exercise‐induced protection against myocardial apoptosis and necrosis: MnSOD, calcium‐handling proteins, and calpain. The FASEB Journal, [S. l.], 2008. DOI: 10.1096/fj.07-102541. FULGHUM, Kyle; HILL, Bradford G. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Frontiers in Cardiovascular Medicine, 2018. DOI: 10.3389/fcvm.2018.00127. FULLER, William; PARMAR, Vina; EATON, Philip; BELL,James R.; SHATTOCK, Michael 56 J. C ardiac ischemia causes inhibition of the Na / K ATPase by a labile cytosolic compound whose production is linked to oxidant stress. [S. l.], v. 57, p. 1044–1051, 2003. GAO, Danchen; ZHANG, Li; DHILLON, Ranvir; HONG, Ting Ting; SHAW, Robin M.; ZHU, Jianhua. Dynasore Protects Mitochondria and Improves Cardiac Lusitropy in Langendorff Perfused Mouse Heart. PLoS ONE, [S. l.], v. 8, n. 4, p. 1–10, 2013. DOI: 10.1371/journal.pone.0060967. GARRIDO, C.; GALLUZZI, L.; BRUNET, M.; PUIG, P. E.; DIDELOT, C.; KROEMER, G. Mechanisms of cytochrome c release from mitochondria. Cell Death and Differentiation, [S. l.], v. 13, n. 9, p. 1423–1433, 2006. DOI: 10.1038/sj.cdd.4401950. GARZA, Michael A.; WASON, Emily A.; CRUGER, Justin R.; CHUNG, Eunhee; ZHANG, John Q. Strength training attenuates post-infarct cardiac dysfunction and remodeling. Journal of Physiological Sciences, [S. l.], v. 69, n. 3, p. 523–530, 2019. DOI: 10.1007/s12576-019-00672-x. Disponível em: https://doi.org/10.1007/s12576-019-00672- x. GEORGOULIS, Anastasios D.; KIAPIDOU, Irini Sofia; VELOGIANNI, Lamprini; STERGIOU, Nicholas; BOLAND, Arthur. Herodicus, the father of sports medicine. Knee Surgery, Sports Traumatology, Arthroscopy, 2007. DOI: 10.1007/s00167-006-0149-z. GERHART-HINES, Zachary; RODGERS, Joseph T.; BARE, Olivia; LERIN, Carles; KIM, Seung Hee; MOSTOSLAVSKY, Raul; ALT, Frederick W.; WU, Zhidan; PUIGSERVER, Pere. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO Journal, [S. l.], v. 26, n. 7, p. 1913–1923, 2007. DOI: 10.1038/sj.emboj.7601633. GIAMPÁ, Sara Quaglia de Campos; MÔNICO-NETO, Marcos; SOUZA, Helton de Sá; MELLO, Marco Túlio De; TUFIK, Sergio; PORTES, Leslie Andrews; SERRA, Andrey Jorge; TUCCI, Paulo José Ferreira; ANTUNES, Hanna Karen Moreira. Effect Of Resistance Training On Myocardial Contractility In Vitro After Sleep Deprivation. International Journal of Cardiovascular Sciences, [S. l.], v. 30, n. 1, p. 20–31, 2017. DOI: 10.5935/2359- 4802.20170019. GLUND, Stephan; DESHMUKH, Atul; YUN, Chau Long; MOLLER, Theodore; KOISTINEN, Heikki A.; CAIDAHL, Kenneth; ZIERATH, Juleen R.; KROOK, Anna. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes, [S. l.], 2007. DOI: 10.2337/db06-1733. GOLDSTEIN, M. S. Humoral nature of hypoglycemia in muscular exercise. American Journal 57 of Physiology-Legacy Content, [S. l.], 1961. DOI: 10.1152/ajplegacy.1961.200.1.67. GOUNI-BERTHOLD, Ioanna; BERTHOLD, Heiner K.; HUH, Joo Young; BERMAN, Reena; SPENRATH, Nadine; KRONE, Wilhelm; MANTZOROS, Christos S. Effects of lipid- lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PloS one, [S. l.], 2013. DOI: 10.1371/journal.pone.0072858. GUO, Wenwen; ZHANG, Baihui; WANG, Xia. Lower irisin levels in coronary artery disease: A meta-analysis. Minerva Endocrinologica, 2020. DOI: 10.23736/S0391-1977.17.02663-3. HALLBERG, Magnus; MORGANSTEIN, Daniel L.; KISKINIS, Evangelos; SHAH, Kunal; KRALLI, Anastasia; DILWORTH, Stephen M.; WHITE, Roger; PARKER, Malcolm G.; CHRISTIAN, Mark. A Functional Interaction between RIP140 and PGC-1α Regulates the Expression of the Lipid Droplet Protein CIDEA. Molecular and Cellular Biology, [S. l.], v. 28, n. 22, p. 6785–6795, 2008. DOI: 10.1128/mcb.00504-08. HAMILTON, Karyn L.; STAIB, Jessica L.; PHILLIPS, Tracey; HESS, Andrea; LENNON, Shannon L.; POWERS, Scott K. Exercise, antioxidants, and HSP72: Protection against myocardial ischemia/reperfusion. Free Radical Biology and Medicine, [S. l.], 2003. DOI: 10.1016/S0891-5849(02)01431-4. HARDIE, D. G.; PAN, D. A. Regulation of fatty acid synthesis and oxidation by the AMP- activated protein kinase. In: BIOCHEMICAL SOCIETY TRANSACTIONS 2002, Anais [...]. [s.l: s.n.] DOI: 10.1042/BST0301064. HE, Yan Yan; ZHANG, Xiao Yang; YUNG, Wing Ho; ZHU, Jing Ning; WANG, Jian Jun. Role of BDNF in central motor structures and motor diseases. Molecular Neurobiology, 2013. DOI: 10.1007/s12035-013-8466-y. HECKSTEDEN, Anne; WEGMANN, Melissa; STEFFEN, Anke; KRAUSHAAR, Jochen; MORSCH, Arne; RUPPENTHAL, Sandra; KAESTNER, Lars; MEYER, Tim. Irisin and exercise training in humans - Results from a randomized controlled training trial. BMC Medicine, [S. l.], 2013. DOI: 10.1186/1741-7015-11-235. HOENE, Miriam; RUNGE, Heike; HÄRING, Hans Ulrich; SCHLEICHER, Erwin D.; WEIGERT, Cora. Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: Role of the STAT3 pathway. American Journal of Physiology - Cell Physiology, [S. l.], 2013. DOI: 10.1152/ajpcell.00025.2012. HORNBERGER JR., Troy A.; FARRAR, Roger P. Physiological Hypertrophy of the FHL Muscle Following 8 Weeks of Progressive Resistance Exercise in the Rat. Canadian Journal of Applied Physiology, [S. l.], 2004. DOI: 10.1139/h04-002. 58 HOSSEINZADEH, Mohammad; LAMIR, Amir Rashid; HEJAZI, Seyed Mahmud. Are heart muscle irisin levels and FNDC5 gene expression regulated by endurance and resistance exercises? Annals of Applied Sport Science, [S. l.], v. 6, n. 1, p. 21–28, 2018. DOI: 10.29252/aassjournal.6.1.21. HOTCHKISS, Richard S.; STRASSER, Andreas; MCDUNN, Jonathan E.; SWANSON, Paul E. Cell death in disease: Mechanisms and emerging therapeutic concepts. New England Journal of Medicine, [S. l.], 2009. HUH, Joo Young et al. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. Journal of Clinical Endocrinology and Metabolism, [S. l.], v. 99, n. 11, p. E2154–E2161, 2014. DOI: 10.1210/jc.2014-1437. HUH, Joo Young; PANAGIOTOU, Grigorios; MOUGIOS, Vassilis; BRINKOETTER, Mary; VAMVINI, Maria T.; SCHNEIDER, Benjamin E.; MANTZOROS, Christos S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism, [S. l.], v. 61, n. 12, p. 1725–1738, 2012. DOI: 10.1016/j.metabol.2012.09.002. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0026049512003320. IMAHASHI, Kenichi; SCHNEIDER, Michael D.; STEENBERGEN, Charles; MURPHY, Elizabeth. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circulation Research, [S. l.], v. 95, n. 7, p. 734–741, 2004. DOI: 10.1161/01.RES.0000143898.67182.4c. IMBODEN, Mary T.; HARBER, Matthew P.; WHALEY, Mitchell H.; FINCH, W. Holmes; BISHOP, Derron L.; KAMINSKY, Leonard A. Cardiorespiratory Fitness and Mortality in Healthy Men and Women. Journal of the American College of Cardiology, [S. l.], 2018. DOI: 10.1016/j.jacc.2018.08.2166. JAYAKUMAR, J. et al. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation, [S. l.], 2001. DOI: 10.1161/hc37t1.094932. JOHANSSON, Barbro B. Hypertension mechanisms causing stroke. In: CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY 1999, Anais [...]. [s.l: s.n.] DOI: 10.1046/j.1440-1681.1999.03081.x. JOHNSON, Miranda D.; BOURET, Sebastien G.; DUNN-MEYNELL, Ambrose A.; BOYLE, 59 Christina N.; LUTZ, Thomas A.; LEVIN, Barry E. Early postnatal amylin treatment enhances hypothalamic leptin signaling and neural development in the selectively bred diet- induced obese rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, [S. l.], 2016. DOI: 10.1152/ajpregu.00326.2016. JUNG, Suryun; KIM, Kijin. Exercise-induced PGC-1α transcriptional factors in skeletal muscle. Integrative Medicine Research, [S. l.], 2014. DOI: 10.1016/j.imr.2014.09.004. KANG, Yun Seok; KIM, Jae Cheol; KIM, Jeong Seok; KIM, Sang Hyun. Effects of swimming exercise on serum irisin and bone FNDC5 in rat models of high-fat diet-induced osteoporosis. Journal of Sports Science and Medicine, [S. l.], v. 18, n. 4, p. 596–603, 2019. KARMAZYN, Morris. The myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury. Keio Journal of Medicine, [S. l.], v. 47, n. 2, p. 65–72, 1998. DOI: 10.2302/kjm.47.65. KARRAS, Spyridon N.; KOUFAKIS, Theocharis; ADAMIDOU, Lilian; DIMAKOPOULOS, Georgios; KARALAZOU, Paraskevi; THISIADOU, Katerina; MAKEDOU, Kali; KOTSA, Kalliopi. Effects of christian orthodox fasting versus time‐restricted eating on plasma irisin concentrations among overweight metabolically healthy individuals. Nutrients, [S. l.], 2021. DOI: 10.3390/nu13041071. KARSTOFT, Kristian; PEDERSEN, Bente K. Skeletal muscle as a gene regulatory endocrine organ. Current Opinion in Clinical Nutrition and Metabolic Care, 2016. DOI: 10.1097/MCO.0000000000000283. KEMI, Ole J.; ELLINGSEN, Øyvind; CECI, Marcello; GRIMALDI, Serena; SMITH, Godfrey L.; CONDORELLI, Gianluigi; WISLØFF, Ulrik. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. Journal of Molecular and Cellular Cardiology, [S. l.], v. 43, n. 3, p. 354– 361, 2007. DOI: 10.1016/j.yjmcc.2007.06.013. KERMANI, Pouneh et al. Neurotrophins promote revascularization by local recruitment of TrkB + endothelial cells and systemic mobilization of hematopoietic progenitors. Journal of Clinical Investigation, [S. l.], 2005. DOI: 10.1172/JCI200522655. KHALAFI, M.; MOHEBBI, H.; KARIMI, P. The effect of high intensity interval training on the serum levels of irisin and fibroblastic growth factor-21 (Fgf-21), and insulin resistance in obese male rats. Iranian Journal of Endocrinology and Metabolism, [S. l.], 2018. KIM, Hee Jae; SO, Byunghun; CHOI, Mijung; KANG, Dongheon; SONG, Wook. Resistance exercise training increases the expression of irisin concomitant with improvement of muscle 60 function in aging mice and humans. Experimental Gerontology, [S. l.], v. 70, p. 11–17, 2015. DOI: 10.1016/j.exger.2015.07.006. Disponível em: http://dx.doi.org/10.1016/j.exger.2015.07.006. KOKKINOS, Peter et al. Exercise capacity and mortality in older men: A 20-year follow-up study. Circulation, [S. l.], 2010. DOI: 10.1161/CIRCULATIONAHA.110.938852. KOLWICZ, Stephen C.; PUROHIT, Suneet; TIAN, Rong. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circulation Research, [S. l.], v. 113, n. 5, p. 603–616, 2013. DOI: 10.1161/CIRCRESAHA.113.302095. KUANG, Jujiao; MCGINLEY, Cian; LEE, Matthew J. C.; SANER, Nicholas J.; GARNHAM, Andrew; BISHOP, David J. Interpretation of exercise-induced changes in human skeletal muscle mRNA expression depends on the timing of the post-exercise biopsies. PeerJ, [S. l.], v. 10, n. 03, p. 1–44, 2022. DOI: 10.7717/peerj.12856. KURDI, Fauziah Nuraini; FLORA, Rostika. Physical exercise increased brain-derived neurotrophic factor in elderly population with depression. Open Access Macedonian Journal of Medical Sciences, [S. l.], 2019. DOI: 10.3889/oamjms.2019.574. KURDIOVA, Timea et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: In vivo and in vitro studies. Journal of Physiology, [S. l.], 2014. DOI: 10.1113/jphysiol.2013.264655. KURIAN, Gino A.; RAJAGOPAL, Rashmi; VEDANTHAM, Srinivasan; RAJESH, Mohanraj. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxidative Medicine and Cellular Longevity, 2016. DOI: 10.1155/2016/1656450. LASKE, Christoph et al. Exercise-induced normalization of decreased BDNF serum concentration in elderly women with remitted major depression. International Journal of Neuropsychopharmacology, [S. l.], 2010. DOI: 10.1017/S1461145709991234. LEBART, Marie Christine; BENYAMIN, Yves. Calpain involvement in the remodeling of cytoskeletal anchorage complexes. FEBS Journal, [S. l.], v. 273, n. 15, p. 3415–3426, 2006. DOI: 10.1111/j.1742-4658.2006.05350.x. LECKER, Stewart H.; ZAVIN, Alexandra; CAO, Peirang; ARENA, Ross; ALLSUP, Kelly; DANIELS, Karla M.; JOSEPH, Jacob; SCHULZE, P. Christian; FORMAN, Daniel E. Expression of the irisin precursor fndc5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circulation: Heart Failure, [S. l.], 2012. DOI: 10.1161/CIRCHEARTFAILURE.112.969543. 61 LEE, Hye Jeong et al. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Molecular Endocrinology, [S. l.], 2015. DOI: 10.1210/me.2014-1353. LEE, Paul et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metabolism, [S. l.], 2014. DOI: 10.1016/j.cmet.2013.12.017. LENNON, Shannon L.; QUINDRY, John; HAMILTON, Karyn L.; FRENCH, Joel; STAIB, Jessica; MEHTA, Jawahar L.; POWERS, Scott K. Loss of exercise-induced cardioprotection after cessation of exercise. Journal of Applied Physiology, [S. l.], 2004. DOI: 10.1152/japplphysiol.00920.2003. LEON, Benjamin M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Fisiológicas
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Biológicas e da Saúde
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11404/1/2022%20-%20Lucas%20Monteiro%20de%20Carvalho.Pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11404/2/2022%20-%20Lucas%20Monteiro%20de%20Carvalho.Pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11404/3/2022%20-%20Lucas%20Monteiro%20de%20Carvalho.Pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11404/4/license.txt
bitstream.checksum.fl_str_mv ecb266d8b2274c4ebf9d822bce6e9bdf
7d123366b22cd6f737bc58ae5c7f7216
7118a01b0df5f38d6776d273392b3a3a
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108228681334784