Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido

Detalhes bibliográficos
Autor(a) principal: Carlos, Mariana Falcão Lopes Princisval
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/16046
Resumo: Este trabalho de tese apresentou a síntese e avaliação da atividade anticorrosiva de dois grupos de moléculas frente ao aço carbono AISI 1020 em meio ácido de HCl 1 mol L -1. O primeiro grupo de moléculas foram os -enaminoésteres, sendo eles o Etil (2Z)-3-anilino-but-2-enoato(H-EN), Etil (2Z)-3-[(4-cloro-fenil)-amino]-but-2-enoato (Cl-EN), Etil (2Z)-3-[(4-bromo-fenil)-amino]-but-2-enoato (Br-EN) e Etil (2Z)-3-[(4-fluor-fenil)-amino]-but-2-enoato (F-EN), os compostos sintetizados foram caracterizados através de RMN de hidrogênio e carbono e suas funções orgânicas por infravermelho. Para avaliação da atividade anticorrosiva foram utilizadas três técnicas eletroquímicas, sendo elas Espectroscopia de Impedância Eletroquímica (EIE), Resistência a Poalrização Linear (RPL) e Polarização Potenciodinâmica (PP), destacando-se o inibidor F-EN com 85% de eficiência pelas técnicas de EIE e RPL. Utilizou-se, também, a técnica gravimétrica de perda de massa, onde variou-se o tempo de imersão dos corpos de prova em solução ácida de HCl 1 mol l-1, com os tempos de 3,6,24 e 48h e além disso, variou-se também a temperatura de estudo, de 30, 40, 50 e 60° C, com o tempo de imersão de 3h fixo. Nesta técnica o F-EN, também apresentou maior eficiência com 98% de eficiência no maior tempo, de 48h, porém sua eficiência com o aumenta da temperatura diminuiu, chegando a 59%, o que indica que a interação existente entre metal/superfície trata-se de uma interação física, podendo ser desfeita. Através dos cálculos de perda de massa foi possível calcular os parâmetros termodinâmicos desses compostos como: Ea, △H#ads, △S#ads. A Isoterma de Lagmuir modificada foi o modelo que mais se adequou ao sistema, sendo possível calcular o Kads e ΔG°ads. A análise da superfície metálica foi realizada através do MEV, que mostrou que a superfície se manteve mais preservada com a presença do inibidor. Os cálculos teóricos corroboraram os resultados encontrados pelas técnicas experimentais. O segundo grupo de moléculas estudado foram as iminochalconas, separadas em duas séries, primeira série: [(1Z,2E)-1,3-difenilprop-2-en-1- ilidieno]-1-fenilamina (IM-A), [(1Z,2E)-1,3-difenilprop-2-en-1- ilidieno]-1-benzilamina (IM-B), [(1Z,2E)-1,3-difenilprop-2-en-1- ilidieno]-1-fenilamina (IM-F) e a segunda série com os substituintes halogenados: [(1Z,2E)-3-(4-clorofenil)-1-fenilprop-2-en-1-ilidieno](2-feniletil)amina (Cl-IM), N-[(1Z,2E)-3-(4-bromofenil)-1-fenilprop-2-en-1-ilidieno]-2-feniletanoamina (Br-IM), [(1Z,2E)-3-(4-fluorfenil)-1-fenilprop-2-en-1-ilideno](2-feniletil)amina (F-IM),sintetizadas através de micro-ondas cinetífico e caracterizadas espectroscópicamente por IV e RMN de 13C e 1H. A avaliação da atividade anticorrosiva das iminochalconas foi realizada através das técnicas eletroquímicas de EIE, RPL e PP, e também pela técnica de perda de massa, resultando em 99% de eficiência por essa última técnica, no qual o inibidor mais eficiente foi o Cl-IM, que também apresentou maior eficiência nas técnicas eletroquímicas, de 97%. O MEV foi realizado e mostrou que a superfície metálica foi 8 mais preservada na presença do inibidor. Os parâmetros termodinâmicos também foram calculados e os cálculos teóricos mostratam porque o derivado com o maior número de espaçadores foi mais eficiente nas técnicas experimentais. Realizou-se o ensaio de perda de massa em solo para a IM-F, utilizando-se o ácido sulfúrico 1 mol L-1 como meio corrosivo, e o inibidor apresentou 92% de eficiência.
id UFRRJ-1_38d64a8b055d5018b31968db75be34c3
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/16046
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Carlos, Mariana Falcão Lopes PrincisvalLima, Aurea Echevarria Aznar Neveshttp://lattes.cnpq.br/1879077396134052Lima, Aurea Echevarria Aznar Neveshttp://lattes.cnpq.br/1879077396134052Santos, Cláudio Eduardo Rodrigues doshttps://orcid.org/0000-0003-0129-2802http://lattes.cnpq.br/0890271430013129Bauerfeldt, Glauco Favillahttps://orcid.org/0000-0001-5906-7080http://lattes.cnpq.br/1876040291299143Silva, Adriana Barbosa daRezende, Michellle Jakeline Cunha139.984.657-40http://lattes.cnpq.br/81407448170088752024-03-04T15:18:58Z2024-03-04T15:18:58Z2022-08-23CARLOS, Mariana Falcão Lopes Princisval. Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido. 2022. 161 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica. 2022.https://rima.ufrrj.br/jspui/handle/20.500.14407/16046Este trabalho de tese apresentou a síntese e avaliação da atividade anticorrosiva de dois grupos de moléculas frente ao aço carbono AISI 1020 em meio ácido de HCl 1 mol L -1. O primeiro grupo de moléculas foram os -enaminoésteres, sendo eles o Etil (2Z)-3-anilino-but-2-enoato(H-EN), Etil (2Z)-3-[(4-cloro-fenil)-amino]-but-2-enoato (Cl-EN), Etil (2Z)-3-[(4-bromo-fenil)-amino]-but-2-enoato (Br-EN) e Etil (2Z)-3-[(4-fluor-fenil)-amino]-but-2-enoato (F-EN), os compostos sintetizados foram caracterizados através de RMN de hidrogênio e carbono e suas funções orgânicas por infravermelho. Para avaliação da atividade anticorrosiva foram utilizadas três técnicas eletroquímicas, sendo elas Espectroscopia de Impedância Eletroquímica (EIE), Resistência a Poalrização Linear (RPL) e Polarização Potenciodinâmica (PP), destacando-se o inibidor F-EN com 85% de eficiência pelas técnicas de EIE e RPL. Utilizou-se, também, a técnica gravimétrica de perda de massa, onde variou-se o tempo de imersão dos corpos de prova em solução ácida de HCl 1 mol l-1, com os tempos de 3,6,24 e 48h e além disso, variou-se também a temperatura de estudo, de 30, 40, 50 e 60° C, com o tempo de imersão de 3h fixo. Nesta técnica o F-EN, também apresentou maior eficiência com 98% de eficiência no maior tempo, de 48h, porém sua eficiência com o aumenta da temperatura diminuiu, chegando a 59%, o que indica que a interação existente entre metal/superfície trata-se de uma interação física, podendo ser desfeita. Através dos cálculos de perda de massa foi possível calcular os parâmetros termodinâmicos desses compostos como: Ea, △H#ads, △S#ads. A Isoterma de Lagmuir modificada foi o modelo que mais se adequou ao sistema, sendo possível calcular o Kads e ΔG°ads. A análise da superfície metálica foi realizada através do MEV, que mostrou que a superfície se manteve mais preservada com a presença do inibidor. Os cálculos teóricos corroboraram os resultados encontrados pelas técnicas experimentais. O segundo grupo de moléculas estudado foram as iminochalconas, separadas em duas séries, primeira série: [(1Z,2E)-1,3-difenilprop-2-en-1- ilidieno]-1-fenilamina (IM-A), [(1Z,2E)-1,3-difenilprop-2-en-1- ilidieno]-1-benzilamina (IM-B), [(1Z,2E)-1,3-difenilprop-2-en-1- ilidieno]-1-fenilamina (IM-F) e a segunda série com os substituintes halogenados: [(1Z,2E)-3-(4-clorofenil)-1-fenilprop-2-en-1-ilidieno](2-feniletil)amina (Cl-IM), N-[(1Z,2E)-3-(4-bromofenil)-1-fenilprop-2-en-1-ilidieno]-2-feniletanoamina (Br-IM), [(1Z,2E)-3-(4-fluorfenil)-1-fenilprop-2-en-1-ilideno](2-feniletil)amina (F-IM),sintetizadas através de micro-ondas cinetífico e caracterizadas espectroscópicamente por IV e RMN de 13C e 1H. A avaliação da atividade anticorrosiva das iminochalconas foi realizada através das técnicas eletroquímicas de EIE, RPL e PP, e também pela técnica de perda de massa, resultando em 99% de eficiência por essa última técnica, no qual o inibidor mais eficiente foi o Cl-IM, que também apresentou maior eficiência nas técnicas eletroquímicas, de 97%. O MEV foi realizado e mostrou que a superfície metálica foi 8 mais preservada na presença do inibidor. Os parâmetros termodinâmicos também foram calculados e os cálculos teóricos mostratam porque o derivado com o maior número de espaçadores foi mais eficiente nas técnicas experimentais. Realizou-se o ensaio de perda de massa em solo para a IM-F, utilizando-se o ácido sulfúrico 1 mol L-1 como meio corrosivo, e o inibidor apresentou 92% de eficiência.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESThis thesis work presented the synthesis and evaluation of the anticorrosive activity of two groups of molecules against AISI 1020 carbon steel in an acidic medium of HCl 1 mol L -1. The first group of molecules were the β-enaminoesters, namely Ethyl (2Z)-3-anilino-but-2-enoate(H-EN), Ethyl (2Z)-3-[(4-chloro-phenyl)- amino]-but-2-enoate (Cl-EN), Ethyl (2Z)-3-[(4-bromo-phenyl)-amino]-but-2-enoate (Br-EN) and Ethyl (2Z)-3 -[(4-fluoro-phenyl)-amino]-but-2-enoate (F-EN), the synthesized compounds were characterized by hydrogen and carbon NMR and their organic functions by infrared. To evaluate the anticorrosive activity, three electrochemical techniques were used, namely Electrochemical Impedance Spectroscopy (EIE), Resistance to Linear Polarization (RPL) and Potentiodynamic Polarization (PP), highlighting the F-EN inhibitor with 85% efficiency by the techniques of EIE and RPL. The mass loss gravimetric technique was also used, where the time of immersion of the specimens in an acidic solution of HCl 1 mol l-1 was varied, with times of 3,6,24 and 48h and beyond Furthermore, the study temperature was also varied, from 30, 40, 50 and 60°C, with a fixed immersion time of 3h. In this technique, the F-EN also showed greater efficiency with 98% efficiency in the longest time, of 48h, but its efficiency with increasing temperature decreased, reaching 59%, which indicates that the existing interaction between metal/surface treats is a physical interaction and can be undone. Through the mass loss calculations it was possible to calculate the thermodynamic parameters of these compounds as: Ea, △H#ads, △S#ads. The modified Lagmuir Isotherm was the model that most suited the system, being possible to calculate the Kads and ΔG°ads. The analysis of the metallic surface was performed using SEM, which showed that the surface remained more preserved with the presence of the inhibitor. Theoretical calculations corroborated the results found by the experimental techniques. The second group of molecules studied were the iminochalcones, separated into two series, the first series: [(1Z,2E)-1,3-diphenylprop-2-en-1-ylidiene]-1-phenylamine (IM-A), [ (1Z,2E)-1,3-diphenylprop-2-en-1-ylidiene]-1-benzylamine (IM-B), [(1Z,2E)-1,3-diphenylprop-2-en-1-ylidiene ]-1-phenylamine (IM-F) and the second series with the halogenated substituents: [(1Z,2E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-ylidiene](2-phenylethyl )amine (Cl-IM), N-[(1Z,2E)-3-(4-bromophenyl)-1-phenylprop-2-en-1-ylidiene]-2-phenylethaneamine (Br-IM), [(1Z ,2E)-3-(4-fluorophenyl)-1-phenylprop-2-en-1-ylidene](2-phenylethyl)amine (F-IM), synthesized by kinetic microwave and characterized spectroscopically by IR and NMR of 13C and 1H. The evaluation of the anticorrosive activity of the iminochalcones was carried out using the electrochemical techniques of EIE, RPL and 10 PP, and also by the mass loss technique, resulting in 99% efficiency by the latter technique, in which the most efficient inhibitor was Cl- IM, which also showed greater efficiency in electrochemical techniques, 97%. SEM was performed and showed that the metallic surface was better preserved in the presence of the inhibitor. The thermodynamic parameters were also calculated and the theoretical calculations show why the derivative with the largest number of spacers was more efficient in the experimental techniques. The soil mass loss test was carried out for IM-F, using 1 mol L-1 sulfuric acid as a corrosive medium, and the inhibitor showed 92% efficiency.porUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de QuímicaQuímicacorrosãoeletroquímicaperda de massainibidores orgânicoscorrosionelectrochemistrymass lossorganic inhibitorsSíntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácidoSynthesis and evaluation of the anticorrosive activity of β-enaminoesters and iminochalcones against aisi 1020 carbon steel in acidic mediuminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisAHAMAD, I.; PRASAD, R.; QURAISHI, M. A. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corrosion Science, v. 52, p. 1472-1481, 2010. ALLISON, T. C.; TONG, Y. J. Application of the condensed Fukui function to predict reactivity in core–shell transition metal nanoparticles. Electrochimica Acta, v. 101, p. 334-340, 2013. AYYANNAN, G.; KARTHIKEYAN, K.; VIVEKANANTHAN, S. S.; GOPIRAMAN, M.; RATHINAVELU, A. Chemical and electrochemical investigations of high carbon steel corrosion inhibition in 10 % HCl medium by quinoline chalcones. Ionics, v. 19, p. 919–932, 2013. CARLOS, M. F. L. P.; Xavier Junior, N.F. ; NEVES, MARCELO ; BAUERFELDT, G. F ; ECHEVARRIA, A. . Synergy between Experimental and Theoretical Investigations Reveals the Anti-Corrosion Efficiency of Imine-Chalcones. Journal of the Brazilian Chemical Society, p. 1654-1669, 2021. 131 COULTHARD, G.; UNSWORTH, W, P.; TAYLOR, R. J. K.; Propylphosphonic anhydride (T3P) mediated synthesis of β-lactams from imines and aryl-substituted acetic acids. Tetrahedron Letters, v. 56, p. 3113–3116, 2015. CHAOUIKIA, A.; LGAZC, H.; SALGHIB, R.; CHAFIQ, M.; OUDDAA, H.; SHUBHALAXMID; BHATD, K. S.; CRETESCUE, I.; ALIF, I. H.; MARZOUKIF, R.; CHUNG, I. M. Assessing the impact of electron-donating-substituted chalcones on inhibition of mild steel corrosion in HCl solution: Experimental results and molecular-level insights. Colloids and Surfaces A, v. 588, p. 124366, 2020. CHUGH, B.; SINGH, A. K.; THAKUR, S.; PANI, B., PANDEY, A. K.; LGAZ, H.; CHUNG, I. M.; EBENSO, E. F. An Exploration about the Interaction of Mild Steel with Hydrochloric Acid in the Presence of N-(Benzo[d]thiazole-2-yl)-1-phenylethan-1-imines. The Journal of Physical Chemistry C, v. 123, p. 22897-22917, 2019. DOHARE, P.; ANSARI, K. R.; QURAISHI, M. A.; OBOT, I. B. Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: Experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry, v. 52, p.197-210, 2017. DUTTA, A.; SAHA, S. K.; BANERJEE, P.; PATRA, A. K.; SUKUL, D. Evaluating corrosion inhibition property of some Schiff bases for mild steel in 1 M HCl: competitive effect of the heteroatom and stereochemical conformation of the molecule. RSC Advances, v.78, p. 74833, 2016. ECHEVARRIA, A.; NASCIMENTO, M. G.; GIESBRECTH, A. M.; MILLER, J.; NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal. Journal of the Brazilian Chemical Society, v. 10, p. 60-64, 1999. ESTEVES-SOUSA, A.; RODRIGUES-SANTOS, C. E.; CISTIA, C. N. D.; SILVA, D. R.; SANT’ANNA, C. M. R.; ECHEVARRIA, A. Solvent-free synthesis, DNA-topoisomerase II activity and molecular docking study of new asymmetrically N,N′-substituted ureas. Molecules, v. 17, p. 12882–12894, 2012. FARAHATI, R.; BEHZADI, H.; MOUSAVI-KHOSHDEL, S. M.; GHAFFARINEJAD, A. Evaluation of corrosion inhibition of 4-(pyridin-3-yl) thiazol-2-amine for copper in HCl by experimental and theoretical studies. Journal of Molecular Structure, v. 1205, p. 127658, 2020. FOUDA, A. S.; HASSAN, A. F.; ELMORSI, M. A.; FAYED, T. A.; ABDELHAKIM, A. Chalcones as environmentally-friendly corrosion inhibitors for stainless steel type 304 in 1 M HCl solutions. International Journal of Electrochemical Science, v. 9, p. 1298-1320, 2014. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; , G; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, .; HRATCHIAN, H. P. et al. Gaussian 09, Revision C.1, 2010. 132 GANGULY, A.; CHAKRABORTY, P.; BANERJEE, K.; CHOUDHURI, S. K. The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug resistance in cancer. European Journal of Pharmaceutical Sciences, v. 51, p. 96–104, 2014. GECE, G. The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Science, v. 50, p. 2981-2992, 2008. GHOLAMI, M.; DANAEE, I.; MADDAHY, M. H.; RASHVANDAVEI, M. Correlated ab initio and electroanalytical study on inhibition behavior of 2-mercaptobenzothiazole and its thiole–thione tautomerism effect for the corrosion of steel (API 5L X52) in sulphuric acid solution. Industrial & Engineering Chemistry Research, v. 52, p. 14875-14889, 2013. GIANNOZZI, P.; BARONI, S.; BONINI, N.; CALANDRA, M.; CAR, R.; CAVAZZONI, C.; CERESOLI, D.; CHIAROTTI, G. L. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, v. 21, p. 395502, 2009. GRIMME, S.; ANTONY, J.; EHRLICH, S.; KRIEG, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, v. 132, p. 154104, 2010. GURUPRASAD, A. M.; SACHIN, H. P.; SWETHA, G. A.; PRASANNA, B. M. Corrosion inhibition of zinc in 0.1 M hydrochloric acid medium with clotrimazole: Experimental, theoretical and quantum studies. Surfaces and Interfaces, v. 19, p. 100478, 2020. HENSLEY, A. J. R.; ZHANG, R.; WANG, Y.; MCEWEN, J. S. Tailoring the Adsorption of Benzene on PdFe Surfaces: A Density Functional Theory Study. The Journal of Physical Chemistry C, v. 117, p. 24317-24328, 2013. HERMOSO-DIAZ, I. A.; FOROOZAN, A. E.; FLORES-DE LOS RIOS, J. P.; LANDEROS-MARTINEZ, L. L.; PORCAYO-CALDERON, J.; GONZALEZ-RODRIGUEZ, J. G. Electrochemical and quantum chemical assessment of linoleic acid as a corrosion inhibitor for carbon steel in sulfuric acid solution. Journal of Molecular Structure, v. 1197, p. 535-546, 2019. HOSSEINI, M.; MERTENS, S. F. L.; GHORBANI, M.; ARSHADI, M. R. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Materials Chemistry and Physics, v. 78, p. 800-808, 2003. HOSSEINI-SARVARI, M. Nano-tube TiO2 as a new catalyst for eco-friendly synthesis of imines in sunlight. Chinese Chemical Letters, v.22, p. 547-550, 2011. ISSA, R. M.; AWAD, M. K.; ATLAM, F. M. Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Applied Surface Science, v. 255, p. 2433, 2008. 133 JENKINS, S. J. Aromatic adsorption on metals via first-principles density functional theory. Proceedings of the Royal Society A Mathematical, Physical and Engineering Science, v. 465, p. 2949-2976, 2009. JOUYBAN, A.; SOLTANPOUR, S.; CHAN, H. K. A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. International Journal of Pharmaceutics, v. 269, p. 353-360, 2004. KELEŞ, H.; KELEŞ, M. Adsorption and anticorrosion behaviour of an imine compound on low carbon steel in HCl solution at different potentials. Journal of Adhesion Science and Technology, v. 32, p. 473, 2018. KHATTABI, M.; BENHIBA, F.; TABTI, S.; DJEDOUANI, A.; EL ASSYRY, A.; TOUZANI, R.; WARAD, I.; OUDDA, H.; ZARROUK, A. Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl. Journal of Molecular Structure, v. 1196, p. 231-244, 2019. KITTEL, C.; Introduction to solid state physics, 5th Editio, John Wiley & Sons, Inc, New York, 1976. KRISHNAVENI, K.; RAVICHANDRAN, J. Effect of aqueous extract of leaves of Morinda tinctoria on corrosion inhibition of aluminium surface in HCl medium. Transactions of Nonferrous Metals Society of China, v. 24, p. 2704-2712, 2014. KUMAR, C. B. P.; MOHANA, K. N. Corrosion inhibition efficiency and adsorption characteristics of some Schiff bases at mild steel/hydrochloric acid interface. Journal of the Taiwan Institute of Chemical Engineers, v.45, p. 1031-1042, 2014. KUMARI, P. P.; SHETTY, P.; RAO, S. A.; SUNIL, D.; VISHWANATH, T. Synthesis, characterization and anticorrosion behaviour of a novel hydrazide derivative on mild steel in hydrochloric acid medium. Bulletin of Materials Science, v. 43, p. 46, 2020. LANGMUIR, I. The constitution and fundamental properties of solids and liquids. ii. Liquids. Journal of the American Chemical Society, v. 39, p. 1848-1906, 1917. LARABI, L.; HAREK, Y.; BENALI, O.; GHALEM, S. Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl. Progress in Organic Coatings, v. 54, p. 256-262, 2005. LEE, S. K.; TAN, K. W.; NG, S. W.; OOI, K. K.; ANG, K. P.; ABDAH, M. A. Zinc (II) complex with a cationic Schiff base ligand: Synthesis, characterization, and biological studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 121, p. 101– 108, 2014. LIANG, C.; LIU, Z.; LIANG, Q.; HAN, G.; HAN, J.; ZHANG, S.; FENG, X.. Synthesis of 2- aminofluorene bis-Schiff base and corrosion inhibition performance for carbon steel in HCl. Journal of Molecular Liquids, v. 277, p. 330–340, 2019. LIU, W.; RUIZ, V. G.; ZHANG, G. X.; SANTRA, B.; REN, X.; SCHEFFLER, M.; TKATCHENKO, A. Structure and energetics of benzene adsorbed on transition-metal 134 surfaces: density-functional theory with van der Waals interactions including collective substrate response. New Journal of Physics, v. 15, p.1, 2013. MAKOV, G.; PAYNE, M. C. Periodic boundary conditions in ab initio calculations. Physical Review B, v.51, p. 4014, 1995. MENDONÇA, G. L. F.; COSTA, S. N.; FREIRE, V. N.; CASCIANO, P. N. S.; CORREIA, A. N.; LIMANETO, P. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corrosion Science, v. 115, p. 41-55, 2017. MOHAMED, E. A.; HASHEM, H. E.; AZMY, E. M.; NEGM, N. A.; FARAG, A. A. Synthesis, structural analysis, and inhibition approach of novel eco-friendly chalcone derivatives on API X65 steel corrosion in acidic media assessment with DFT & MD studies. Environmental Technology & Innovation, v. 24, p. 101966, 2021. MURMU, M.; SAHA, S. K.; MURMU, N. C.; BANERJEE, P. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L −1 HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corrosion Science, v. 146, n. August 2017, p. 134–151, 2019. NAIK, V.S.; PATIL, P.S.; WONG, Q.A.; QUAH, C.K.; GUMMAGOL, N.B.; JAYANNA, H.S. Molecular structure, linear optical, second and third-order nonlinear optical properties of two non-centrosymmetric thiophene-chalcone derivatives. Journal of Molecular Structure, v.1222, p. 128901, 2020. NARENDER, T.; VENKATESWARLU, K.; NAYAK, B. V.; SARKAR, S. A new chemical access for 3’- acetyl-4’-hydroxychalcones using borontrifluoride-etherate via a regioselective Claisen-Schmidt condensation and its application in the synthesis of chalcone hybrids. Tetrahedron Letters, v. 52, p. 5794, 2011. NEESE, F. Software update: the ORCA program system, version 4.0. Interdisciplinary Review Computacional Molecule Science, v.8, p.1327, 2018. NOWAKOWSKA, Z. A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, v. 42, p. 125, 2007. OBOT, I. B.; MACDONALD, D. D.; GASEM, Z. M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corrosion Science, v. 99, p. 1-30,2015. PARR, R. G.; PEARSON, R. G. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, v. 105, p. 7512-7516, 1983. PERDEW, J. P.; ERNZERHOF, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. Journal of Chemical Physics, v. 105, p. 9982, 1996. 135 QURAISHI, M. A.; SINGH, A.; SINGH, V. K.; YADAV, D. K.; SINGH, A. K. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves. Materials Chemistry and Physics, v. 122, p. 114-122, 2010. RAMOS, N. C.; ECHEVARRIA, A.; VALBON, A.; BORTOLUZZI, A. J.; GUEDES, G. P.;RODRIGUES-SANTOS, C. E. Regioselective synthesis of imines (2-N-amine-3-N- (phenylmethylene)-5-pyridine) in water under microwave irradiation. Cogent Chemistry, v. 2, p. 1207863, 2016. SALMAN, T. A.; ZINAD, D. S.; JABER, S. H.; AL-GHEZI, M.; MAHAL, A.; TAKRIFF, M. S.; A.A. ALAMIERY, A. A. Effect of 1,3,4-thiadiazole scaffold on the corrosion inhibition of mild steel in acidic medium: An experimental and computational study. Journal of Bio- and Tribo-Corrosion, v.5, p. 48, 2019. SEIFZDEH, D.; BASHARNAVAZ, H.; BEZAATPOUR, A. A Schiff base compound as effective corrosion inhibitor for magnesium in acidic media. Materials Chemistry and Physics, v. 138, p. 794–802, 2014. SILVA, A. B. DA; D’ELIA, E.; GOMES, J. A. C. P. Carbon steel corrosion inhibition in hydrochloric acid solution using a reduced Schiff base of ethylenediamine. Corrosion Science, v. 52, p. 788-793, 2010. SINGH, A. K.; LIN, Y.; OBOT, I. B.; EBENSO, E. E. Macrocyclic inhibitor for corrosion of N80 steel in 3.5% NaCl solution saturated with CO2. Journal of Molecular Liquids, v. 219, p. 865-874, 2016 . SINGH, A.; AHAMAD, I.; QURAISHI, M.A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, v. 9, p. S1584-S1589, 2016. SINGH, A.; QURAISHI, M. A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, v. 9, p. S1584-S1589, 2016. SINGH, A. K.; THAKUR, S.; PANI, B.; SINGH, G. Green synthesis and corrosion inhibition study of 2-amino-N′-((thiophen-2-yl)methylene)benzohydrazide. New Journal of Chemistry, v. 42, p. 2113, 2018. SPENCER, M. J. S.; HUNG, A.; SNOOK, I. K.; YAROVSKY, I. Density functional theory study of the relaxation and energy of iron surfaces. Surface Science, v. 513, p. 389-398, 2002. TAYLOR, C. D. Corrosion informatics: an integrated approach to modelling corrosion. Corrosion Engineering, Science and Technology, v. 50, p. 490-508, 2015. TORRES, V. V.; AMADO, R. S.; SÁ, C. F.; FERNANDEZ, T. L.; RIEHL, C. A. S.; TORRES, A. G.; D’ELIA, E. Inhibitory action of aqueous coffee ground extracts on the corrosion of carbon steel in HCl solution. Corrosion Science, v.53, p. 2385, 2011. 136 VALBON, A.; RIBEIRO, B. F.; SOARES, M. A. F.; OLIVEIRA, M. C. C.; NEVES, M. A.; ECHEVARRIA, A. Extrato de hibisco-colibri como inibidor verde de corrosão do açocarbono em ácido sulfúrico. Química Nova. v. 42, p. 797-802, 2019. VANDERBILT, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, v. 41, p. 7892, 1990. YILDIZ, R. Adsorption and inhibition effect of 2,4-diamino-6-hydroxypyrimidine for mild steel corrosion in HCl medium: experimental and theoretical investigation. Ionics,v. 25, p. 859-870, 2018. YILDIZ, R. An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corrosion Science, v. 90, p. 544-553, 2015. YÜCE, A. O.; MERT, B. D.; KARDAŞ, G.; YAZICI, B. Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution. Corrosion Science, v. 83, p. 310-316, 2014. YURT, A.; DURAN, B.; DAL, H. An experimental and theoretical investigation on adsorption properties of some diphenolic Schiff bases as corrosion inhibitors at acidic solution/mild steel interface. Arabian Journal of Chemistry, v. 7, p. 732- 740, 2014. ZAREI, M. An efficient and green method for the synthesis of 2-azetidinones mediated by propylphosphonic anhydride. Monatshefte für Chemie - Chemical Monthly, v. 145, p. 1495–1499, 2014. ZHANG, H.; PANG, X.; GAO, K. Localized CO2 corrosion of carbon steel with different microstructures in brine solutions with an imidazoline-based inhibitor. Applied Surface Science, v. 442, p. 446-460, 2018.AHAMAD, I.; PRASAD, R.; QURAISHI, M. A. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corrosion Science, v. 52, p. 1472-1481, 2010. ALLISON, T. C.; TONG, Y. J. Application of the condensed Fukui function to predict reactivity in core–shell transition metal nanoparticles. Electrochimica Acta, v. 101, p. 334-340, 2013. AYYANNAN, G.; KARTHIKEYAN, K.; VIVEKANANTHAN, S. S.; GOPIRAMAN, M.; RATHINAVELU, A. Chemical and electrochemical investigations of high carbon steel corrosion inhibition in 10 % HCl medium by quinoline chalcones. Ionics, v. 19, p. 919–932, 2013. CARLOS, M. F. L. P.; Xavier Junior, N.F. ; NEVES, MARCELO ; BAUERFELDT, G. F ; ECHEVARRIA, A. . Synergy between Experimental and Theoretical Investigations Reveals the Anti-Corrosion Efficiency of Imine-Chalcones. Journal of the Brazilian Chemical Society, p. 1654-1669, 2021. 131 COULTHARD, G.; UNSWORTH, W, P.; TAYLOR, R. J. K.; Propylphosphonic anhydride (T3P) mediated synthesis of β-lactams from imines and aryl-substituted acetic acids. Tetrahedron Letters, v. 56, p. 3113–3116, 2015. CHAOUIKIA, A.; LGAZC, H.; SALGHIB, R.; CHAFIQ, M.; OUDDAA, H.; SHUBHALAXMID; BHATD, K. S.; CRETESCUE, I.; ALIF, I. H.; MARZOUKIF, R.; CHUNG, I. M. Assessing the impact of electron-donating-substituted chalcones on inhibition of mild steel corrosion in HCl solution: Experimental results and molecular-level insights. Colloids and Surfaces A, v. 588, p. 124366, 2020. CHUGH, B.; SINGH, A. K.; THAKUR, S.; PANI, B., PANDEY, A. K.; LGAZ, H.; CHUNG, I. M.; EBENSO, E. F. An Exploration about the Interaction of Mild Steel with Hydrochloric Acid in the Presence of N-(Benzo[d]thiazole-2-yl)-1-phenylethan-1-imines. The Journal of Physical Chemistry C, v. 123, p. 22897-22917, 2019. DOHARE, P.; ANSARI, K. R.; QURAISHI, M. A.; OBOT, I. B. Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: Experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry, v. 52, p.197-210, 2017. DUTTA, A.; SAHA, S. K.; BANERJEE, P.; PATRA, A. K.; SUKUL, D. Evaluating corrosion inhibition property of some Schiff bases for mild steel in 1 M HCl: competitive effect of the heteroatom and stereochemical conformation of the molecule. RSC Advances, v.78, p. 74833, 2016. ECHEVARRIA, A.; NASCIMENTO, M. G.; GIESBRECTH, A. M.; MILLER, J.; NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal. Journal of the Brazilian Chemical Society, v. 10, p. 60-64, 1999. ESTEVES-SOUSA, A.; RODRIGUES-SANTOS, C. E.; CISTIA, C. N. D.; SILVA, D. R.; SANT’ANNA, C. M. R.; ECHEVARRIA, A. Solvent-free synthesis, DNA-topoisomerase II activity and molecular docking study of new asymmetrically N,N′-substituted ureas. Molecules, v. 17, p. 12882–12894, 2012. FARAHATI, R.; BEHZADI, H.; MOUSAVI-KHOSHDEL, S. M.; GHAFFARINEJAD, A. Evaluation of corrosion inhibition of 4-(pyridin-3-yl) thiazol-2-amine for copper in HCl by experimental and theoretical studies. Journal of Molecular Structure, v. 1205, p. 127658, 2020. FOUDA, A. S.; HASSAN, A. F.; ELMORSI, M. A.; FAYED, T. A.; ABDELHAKIM, A. Chalcones as environmentally-friendly corrosion inhibitors for stainless steel type 304 in 1 M HCl solutions. International Journal of Electrochemical Science, v. 9, p. 1298-1320, 2014. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; , G; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, .; HRATCHIAN, H. P. et al. Gaussian 09, Revision C.1, 2010. 132 GANGULY, A.; CHAKRABORTY, P.; BANERJEE, K.; CHOUDHURI, S. K. The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug resistance in cancer. European Journal of Pharmaceutical Sciences, v. 51, p. 96–104, 2014. GECE, G. The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Science, v. 50, p. 2981-2992, 2008. GHOLAMI, M.; DANAEE, I.; MADDAHY, M. H.; RASHVANDAVEI, M. Correlated ab initio and electroanalytical study on inhibition behavior of 2-mercaptobenzothiazole and its thiole–thione tautomerism effect for the corrosion of steel (API 5L X52) in sulphuric acid solution. Industrial & Engineering Chemistry Research, v. 52, p. 14875-14889, 2013. GIANNOZZI, P.; BARONI, S.; BONINI, N.; CALANDRA, M.; CAR, R.; CAVAZZONI, C.; CERESOLI, D.; CHIAROTTI, G. L. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, v. 21, p. 395502, 2009. GRIMME, S.; ANTONY, J.; EHRLICH, S.; KRIEG, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, v. 132, p. 154104, 2010. GURUPRASAD, A. M.; SACHIN, H. P.; SWETHA, G. A.; PRASANNA, B. M. Corrosion inhibition of zinc in 0.1 M hydrochloric acid medium with clotrimazole: Experimental, theoretical and quantum studies. Surfaces and Interfaces, v. 19, p. 100478, 2020. HENSLEY, A. J. R.; ZHANG, R.; WANG, Y.; MCEWEN, J. S. Tailoring the Adsorption of Benzene on PdFe Surfaces: A Density Functional Theory Study. The Journal of Physical Chemistry C, v. 117, p. 24317-24328, 2013. HERMOSO-DIAZ, I. A.; FOROOZAN, A. E.; FLORES-DE LOS RIOS, J. P.; LANDEROS-MARTINEZ, L. L.; PORCAYO-CALDERON, J.; GONZALEZ-RODRIGUEZ, J. G. Electrochemical and quantum chemical assessment of linoleic acid as a corrosion inhibitor for carbon steel in sulfuric acid solution. Journal of Molecular Structure, v. 1197, p. 535-546, 2019. HOSSEINI, M.; MERTENS, S. F. L.; GHORBANI, M.; ARSHADI, M. R. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Materials Chemistry and Physics, v. 78, p. 800-808, 2003. HOSSEINI-SARVARI, M. Nano-tube TiO2 as a new catalyst for eco-friendly synthesis of imines in sunlight. Chinese Chemical Letters, v.22, p. 547-550, 2011. ISSA, R. M.; AWAD, M. K.; ATLAM, F. M. Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Applied Surface Science, v. 255, p. 2433, 2008. 133 JENKINS, S. J. Aromatic adsorption on metals via first-principles density functional theory. Proceedings of the Royal Society A Mathematical, Physical and Engineering Science, v. 465, p. 2949-2976, 2009. JOUYBAN, A.; SOLTANPOUR, S.; CHAN, H. K. A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. International Journal of Pharmaceutics, v. 269, p. 353-360, 2004. KELEŞ, H.; KELEŞ, M. Adsorption and anticorrosion behaviour of an imine compound on low carbon steel in HCl solution at different potentials. Journal of Adhesion Science and Technology, v. 32, p. 473, 2018. KHATTABI, M.; BENHIBA, F.; TABTI, S.; DJEDOUANI, A.; EL ASSYRY, A.; TOUZANI, R.; WARAD, I.; OUDDA, H.; ZARROUK, A. Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl. Journal of Molecular Structure, v. 1196, p. 231-244, 2019. KITTEL, C.; Introduction to solid state physics, 5th Editio, John Wiley & Sons, Inc, New York, 1976. KRISHNAVENI, K.; RAVICHANDRAN, J. Effect of aqueous extract of leaves of Morinda tinctoria on corrosion inhibition of aluminium surface in HCl medium. Transactions of Nonferrous Metals Society of China, v. 24, p. 2704-2712, 2014. KUMAR, C. B. P.; MOHANA, K. N. Corrosion inhibition efficiency and adsorption characteristics of some Schiff bases at mild steel/hydrochloric acid interface. Journal of the Taiwan Institute of Chemical Engineers, v.45, p. 1031-1042, 2014. KUMARI, P. P.; SHETTY, P.; RAO, S. A.; SUNIL, D.; VISHWANATH, T. Synthesis, characterization and anticorrosion behaviour of a novel hydrazide derivative on mild steel in hydrochloric acid medium. Bulletin of Materials Science, v. 43, p. 46, 2020. LANGMUIR, I. The constitution and fundamental properties of solids and liquids. ii. Liquids. Journal of the American Chemical Society, v. 39, p. 1848-1906, 1917. LARABI, L.; HAREK, Y.; BENALI, O.; GHALEM, S. Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl. Progress in Organic Coatings, v. 54, p. 256-262, 2005. LEE, S. K.; TAN, K. W.; NG, S. W.; OOI, K. K.; ANG, K. P.; ABDAH, M. A. Zinc (II) complex with a cationic Schiff base ligand: Synthesis, characterization, and biological studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 121, p. 101– 108, 2014. LIANG, C.; LIU, Z.; LIANG, Q.; HAN, G.; HAN, J.; ZHANG, S.; FENG, X.. Synthesis of 2- aminofluorene bis-Schiff base and corrosion inhibition performance for carbon steel in HCl. Journal of Molecular Liquids, v. 277, p. 330–340, 2019. LIU, W.; RUIZ, V. G.; ZHANG, G. X.; SANTRA, B.; REN, X.; SCHEFFLER, M.; TKATCHENKO, A. Structure and energetics of benzene adsorbed on transition-metal 134 surfaces: density-functional theory with van der Waals interactions including collective substrate response. New Journal of Physics, v. 15, p.1, 2013. MAKOV, G.; PAYNE, M. C. Periodic boundary conditions in ab initio calculations. Physical Review B, v.51, p. 4014, 1995. MENDONÇA, G. L. F.; COSTA, S. N.; FREIRE, V. N.; CASCIANO, P. N. S.; CORREIA, A. N.; LIMANETO, P. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corrosion Science, v. 115, p. 41-55, 2017. MOHAMED, E. A.; HASHEM, H. E.; AZMY, E. M.; NEGM, N. A.; FARAG, A. A. Synthesis, structural analysis, and inhibition approach of novel eco-friendly chalcone derivatives on API X65 steel corrosion in acidic media assessment with DFT & MD studies. Environmental Technology & Innovation, v. 24, p. 101966, 2021. MURMU, M.; SAHA, S. K.; MURMU, N. C.; BANERJEE, P. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L −1 HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corrosion Science, v. 146, n. August 2017, p. 134–151, 2019. NAIK, V.S.; PATIL, P.S.; WONG, Q.A.; QUAH, C.K.; GUMMAGOL, N.B.; JAYANNA, H.S. Molecular structure, linear optical, second and third-order nonlinear optical properties of two non-centrosymmetric thiophene-chalcone derivatives. Journal of Molecular Structure, v.1222, p. 128901, 2020. NARENDER, T.; VENKATESWARLU, K.; NAYAK, B. V.; SARKAR, S. A new chemical access for 3’- acetyl-4’-hydroxychalcones using borontrifluoride-etherate via a regioselective Claisen-Schmidt condensation and its application in the synthesis of chalcone hybrids. Tetrahedron Letters, v. 52, p. 5794, 2011. NEESE, F. Software update: the ORCA program system, version 4.0. Interdisciplinary Review Computacional Molecule Science, v.8, p.1327, 2018. NOWAKOWSKA, Z. A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, v. 42, p. 125, 2007. OBOT, I. B.; MACDONALD, D. D.; GASEM, Z. M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corrosion Science, v. 99, p. 1-30,2015. PARR, R. G.; PEARSON, R. G. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, v. 105, p. 7512-7516, 1983. PERDEW, J. P.; ERNZERHOF, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. Journal of Chemical Physics, v. 105, p. 9982, 1996. 135 QURAISHI, M. A.; SINGH, A.; SINGH, V. K.; YADAV, D. K.; SINGH, A. K. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves. Materials Chemistry and Physics, v. 122, p. 114-122, 2010. RAMOS, N. C.; ECHEVARRIA, A.; VALBON, A.; BORTOLUZZI, A. J.; GUEDES, G. P.;RODRIGUES-SANTOS, C. E. Regioselective synthesis of imines (2-N-amine-3-N- (phenylmethylene)-5-pyridine) in water under microwave irradiation. Cogent Chemistry, v. 2, p. 1207863, 2016. SALMAN, T. A.; ZINAD, D. S.; JABER, S. H.; AL-GHEZI, M.; MAHAL, A.; TAKRIFF, M. S.; A.A. ALAMIERY, A. A. Effect of 1,3,4-thiadiazole scaffold on the corrosion inhibition of mild steel in acidic medium: An experimental and computational study. Journal of Bio- and Tribo-Corrosion, v.5, p. 48, 2019. SEIFZDEH, D.; BASHARNAVAZ, H.; BEZAATPOUR, A. A Schiff base compound as effective corrosion inhibitor for magnesium in acidic media. Materials Chemistry and Physics, v. 138, p. 794–802, 2014. SILVA, A. B. DA; D’ELIA, E.; GOMES, J. A. C. P. Carbon steel corrosion inhibition in hydrochloric acid solution using a reduced Schiff base of ethylenediamine. Corrosion Science, v. 52, p. 788-793, 2010. SINGH, A. K.; LIN, Y.; OBOT, I. B.; EBENSO, E. E. Macrocyclic inhibitor for corrosion of N80 steel in 3.5% NaCl solution saturated with CO2. Journal of Molecular Liquids, v. 219, p. 865-874, 2016 . SINGH, A.; AHAMAD, I.; QURAISHI, M.A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, v. 9, p. S1584-S1589, 2016. SINGH, A.; QURAISHI, M. A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, v. 9, p. S1584-S1589, 2016. SINGH, A. K.; THAKUR, S.; PANI, B.; SINGH, G. Green synthesis and corrosion inhibition study of 2-amino-N′-((thiophen-2-yl)methylene)benzohydrazide. New Journal of Chemistry, v. 42, p. 2113, 2018. SPENCER, M. J. S.; HUNG, A.; SNOOK, I. K.; YAROVSKY, I. Density functional theory study of the relaxation and energy of iron surfaces. Surface Science, v. 513, p. 389-398, 2002. TAYLOR, C. D. Corrosion informatics: an integrated approach to modelling corrosion. Corrosion Engineering, Science and Technology, v. 50, p. 490-508, 2015. TORRES, V. V.; AMADO, R. S.; SÁ, C. F.; FERNANDEZ, T. L.; RIEHL, C. A. S.; TORRES, A. G.; D’ELIA, E. Inhibitory action of aqueous coffee ground extracts on the corrosion of carbon steel in HCl solution. Corrosion Science, v.53, p. 2385, 2011. 136 VALBON, A.; RIBEIRO, B. F.; SOARES, M. A. F.; OLIVEIRA, M. C. C.; NEVES, M. A.; ECHEVARRIA, A. Extrato de hibisco-colibri como inibidor verde de corrosão do açocarbono em ácido sulfúrico. Química Nova. v. 42, p. 797-802, 2019. VANDERBILT, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, v. 41, p. 7892, 1990. YILDIZ, R. Adsorption and inhibition effect of 2,4-diamino-6-hydroxypyrimidine for mild steel corrosion in HCl medium: experimental and theoretical investigation. Ionics,v. 25, p. 859-870, 2018. YILDIZ, R. An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corrosion Science, v. 90, p. 544-553, 2015. YÜCE, A. O.; MERT, B. D.; KARDAŞ, G.; YAZICI, B. Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution. Corrosion Science, v. 83, p. 310-316, 2014. YURT, A.; DURAN, B.; DAL, H. An experimental and theoretical investigation on adsorption properties of some diphenolic Schiff bases as corrosion inhibitors at acidic solution/mild steel interface. Arabian Journal of Chemistry, v. 7, p. 732- 740, 2014. ZAREI, M. An efficient and green method for the synthesis of 2-azetidinones mediated by propylphosphonic anhydride. Monatshefte für Chemie - Chemical Monthly, v. 145, p. 1495–1499, 2014. ZHANG, H.; PANG, X.; GAO, K. Localized CO2 corrosion of carbon steel with different microstructures in brine solutions with an imidazoline-based inhibitor. Applied Surface Science, v. 442, p. 446-460, 2018.reponame:Repositório Institucional da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJinfo:eu-repo/semantics/openAccessORIGINAL2022 - Mariana Falcão Lopes Princisval Carlos.Pdf2022 - Mariana Falcão Lopes Princisval Carlos.Pdfapplication/pdf4733075https://rima.ufrrj.br/jspui/bitstream/20.500.14407/16046/1/2022%20-%20Mariana%20Falc%c3%a3o%20Lopes%20Princisval%20Carlos.Pdf899a4da71b4b515766640e60099d0883MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://rima.ufrrj.br/jspui/bitstream/20.500.14407/16046/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXT2022 - Mariana Falcão Lopes Princisval Carlos.Pdf.txt2022 - Mariana Falcão Lopes Princisval Carlos.Pdf.txtExtracted texttext/plain273393https://rima.ufrrj.br/jspui/bitstream/20.500.14407/16046/3/2022%20-%20Mariana%20Falc%c3%a3o%20Lopes%20Princisval%20Carlos.Pdf.txt31dafd10ad543c6f5cae231d3cc81e98MD53THUMBNAIL2022 - Mariana Falcão Lopes Princisval Carlos.Pdf.jpg2022 - Mariana Falcão Lopes Princisval Carlos.Pdf.jpgGenerated Thumbnailimage/jpeg1208https://rima.ufrrj.br/jspui/bitstream/20.500.14407/16046/4/2022%20-%20Mariana%20Falc%c3%a3o%20Lopes%20Princisval%20Carlos.Pdf.jpge2bf8d8c4c6b57ec7f9f26a18e1b13deMD5420.500.14407/160462024-08-06 02:19:40.946oai:rima.ufrrj.br:20.500.14407/16046Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.bropendoar:2024-08-06T05:19:40Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.pt_BR.fl_str_mv Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido
dc.title.alternative.en.fl_str_mv Synthesis and evaluation of the anticorrosive activity of β-enaminoesters and iminochalcones against aisi 1020 carbon steel in acidic medium
title Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido
spellingShingle Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido
Carlos, Mariana Falcão Lopes Princisval
Química
corrosão
eletroquímica
perda de massa
inibidores orgânicos
corrosion
electrochemistry
mass loss
organic inhibitors
title_short Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido
title_full Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido
title_fullStr Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido
title_full_unstemmed Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido
title_sort Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido
author Carlos, Mariana Falcão Lopes Princisval
author_facet Carlos, Mariana Falcão Lopes Princisval
author_role author
dc.contributor.author.fl_str_mv Carlos, Mariana Falcão Lopes Princisval
dc.contributor.advisor1.fl_str_mv Lima, Aurea Echevarria Aznar Neves
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1879077396134052
dc.contributor.referee1.fl_str_mv Lima, Aurea Echevarria Aznar Neves
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1879077396134052
dc.contributor.referee2.fl_str_mv Santos, Cláudio Eduardo Rodrigues dos
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0003-0129-2802
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/0890271430013129
dc.contributor.referee3.fl_str_mv Bauerfeldt, Glauco Favilla
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0001-5906-7080
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/1876040291299143
dc.contributor.referee4.fl_str_mv Silva, Adriana Barbosa da
dc.contributor.referee5.fl_str_mv Rezende, Michellle Jakeline Cunha
dc.contributor.authorID.fl_str_mv 139.984.657-40
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8140744817008875
contributor_str_mv Lima, Aurea Echevarria Aznar Neves
Lima, Aurea Echevarria Aznar Neves
Santos, Cláudio Eduardo Rodrigues dos
Bauerfeldt, Glauco Favilla
Silva, Adriana Barbosa da
Rezende, Michellle Jakeline Cunha
dc.subject.cnpq.fl_str_mv Química
topic Química
corrosão
eletroquímica
perda de massa
inibidores orgânicos
corrosion
electrochemistry
mass loss
organic inhibitors
dc.subject.por.fl_str_mv corrosão
eletroquímica
perda de massa
inibidores orgânicos
corrosion
electrochemistry
mass loss
organic inhibitors
description Este trabalho de tese apresentou a síntese e avaliação da atividade anticorrosiva de dois grupos de moléculas frente ao aço carbono AISI 1020 em meio ácido de HCl 1 mol L -1. O primeiro grupo de moléculas foram os -enaminoésteres, sendo eles o Etil (2Z)-3-anilino-but-2-enoato(H-EN), Etil (2Z)-3-[(4-cloro-fenil)-amino]-but-2-enoato (Cl-EN), Etil (2Z)-3-[(4-bromo-fenil)-amino]-but-2-enoato (Br-EN) e Etil (2Z)-3-[(4-fluor-fenil)-amino]-but-2-enoato (F-EN), os compostos sintetizados foram caracterizados através de RMN de hidrogênio e carbono e suas funções orgânicas por infravermelho. Para avaliação da atividade anticorrosiva foram utilizadas três técnicas eletroquímicas, sendo elas Espectroscopia de Impedância Eletroquímica (EIE), Resistência a Poalrização Linear (RPL) e Polarização Potenciodinâmica (PP), destacando-se o inibidor F-EN com 85% de eficiência pelas técnicas de EIE e RPL. Utilizou-se, também, a técnica gravimétrica de perda de massa, onde variou-se o tempo de imersão dos corpos de prova em solução ácida de HCl 1 mol l-1, com os tempos de 3,6,24 e 48h e além disso, variou-se também a temperatura de estudo, de 30, 40, 50 e 60° C, com o tempo de imersão de 3h fixo. Nesta técnica o F-EN, também apresentou maior eficiência com 98% de eficiência no maior tempo, de 48h, porém sua eficiência com o aumenta da temperatura diminuiu, chegando a 59%, o que indica que a interação existente entre metal/superfície trata-se de uma interação física, podendo ser desfeita. Através dos cálculos de perda de massa foi possível calcular os parâmetros termodinâmicos desses compostos como: Ea, △H#ads, △S#ads. A Isoterma de Lagmuir modificada foi o modelo que mais se adequou ao sistema, sendo possível calcular o Kads e ΔG°ads. A análise da superfície metálica foi realizada através do MEV, que mostrou que a superfície se manteve mais preservada com a presença do inibidor. Os cálculos teóricos corroboraram os resultados encontrados pelas técnicas experimentais. O segundo grupo de moléculas estudado foram as iminochalconas, separadas em duas séries, primeira série: [(1Z,2E)-1,3-difenilprop-2-en-1- ilidieno]-1-fenilamina (IM-A), [(1Z,2E)-1,3-difenilprop-2-en-1- ilidieno]-1-benzilamina (IM-B), [(1Z,2E)-1,3-difenilprop-2-en-1- ilidieno]-1-fenilamina (IM-F) e a segunda série com os substituintes halogenados: [(1Z,2E)-3-(4-clorofenil)-1-fenilprop-2-en-1-ilidieno](2-feniletil)amina (Cl-IM), N-[(1Z,2E)-3-(4-bromofenil)-1-fenilprop-2-en-1-ilidieno]-2-feniletanoamina (Br-IM), [(1Z,2E)-3-(4-fluorfenil)-1-fenilprop-2-en-1-ilideno](2-feniletil)amina (F-IM),sintetizadas através de micro-ondas cinetífico e caracterizadas espectroscópicamente por IV e RMN de 13C e 1H. A avaliação da atividade anticorrosiva das iminochalconas foi realizada através das técnicas eletroquímicas de EIE, RPL e PP, e também pela técnica de perda de massa, resultando em 99% de eficiência por essa última técnica, no qual o inibidor mais eficiente foi o Cl-IM, que também apresentou maior eficiência nas técnicas eletroquímicas, de 97%. O MEV foi realizado e mostrou que a superfície metálica foi 8 mais preservada na presença do inibidor. Os parâmetros termodinâmicos também foram calculados e os cálculos teóricos mostratam porque o derivado com o maior número de espaçadores foi mais eficiente nas técnicas experimentais. Realizou-se o ensaio de perda de massa em solo para a IM-F, utilizando-se o ácido sulfúrico 1 mol L-1 como meio corrosivo, e o inibidor apresentou 92% de eficiência.
publishDate 2022
dc.date.issued.fl_str_mv 2022-08-23
dc.date.accessioned.fl_str_mv 2024-03-04T15:18:58Z
dc.date.available.fl_str_mv 2024-03-04T15:18:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARLOS, Mariana Falcão Lopes Princisval. Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido. 2022. 161 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica. 2022.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/16046
identifier_str_mv CARLOS, Mariana Falcão Lopes Princisval. Síntese e avaliação da atividade anticorrosiva de -enaminoésteres e iminochalconas frente ao aço carbono aisi 1020 em meio ácido. 2022. 161 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica. 2022.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/16046
dc.language.iso.fl_str_mv por
language por
dc.relation.references.pt_BR.fl_str_mv AHAMAD, I.; PRASAD, R.; QURAISHI, M. A. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corrosion Science, v. 52, p. 1472-1481, 2010. ALLISON, T. C.; TONG, Y. J. Application of the condensed Fukui function to predict reactivity in core–shell transition metal nanoparticles. Electrochimica Acta, v. 101, p. 334-340, 2013. AYYANNAN, G.; KARTHIKEYAN, K.; VIVEKANANTHAN, S. S.; GOPIRAMAN, M.; RATHINAVELU, A. Chemical and electrochemical investigations of high carbon steel corrosion inhibition in 10 % HCl medium by quinoline chalcones. Ionics, v. 19, p. 919–932, 2013. CARLOS, M. F. L. P.; Xavier Junior, N.F. ; NEVES, MARCELO ; BAUERFELDT, G. F ; ECHEVARRIA, A. . Synergy between Experimental and Theoretical Investigations Reveals the Anti-Corrosion Efficiency of Imine-Chalcones. Journal of the Brazilian Chemical Society, p. 1654-1669, 2021. 131 COULTHARD, G.; UNSWORTH, W, P.; TAYLOR, R. J. K.; Propylphosphonic anhydride (T3P) mediated synthesis of β-lactams from imines and aryl-substituted acetic acids. Tetrahedron Letters, v. 56, p. 3113–3116, 2015. CHAOUIKIA, A.; LGAZC, H.; SALGHIB, R.; CHAFIQ, M.; OUDDAA, H.; SHUBHALAXMID; BHATD, K. S.; CRETESCUE, I.; ALIF, I. H.; MARZOUKIF, R.; CHUNG, I. M. Assessing the impact of electron-donating-substituted chalcones on inhibition of mild steel corrosion in HCl solution: Experimental results and molecular-level insights. Colloids and Surfaces A, v. 588, p. 124366, 2020. CHUGH, B.; SINGH, A. K.; THAKUR, S.; PANI, B., PANDEY, A. K.; LGAZ, H.; CHUNG, I. M.; EBENSO, E. F. An Exploration about the Interaction of Mild Steel with Hydrochloric Acid in the Presence of N-(Benzo[d]thiazole-2-yl)-1-phenylethan-1-imines. The Journal of Physical Chemistry C, v. 123, p. 22897-22917, 2019. DOHARE, P.; ANSARI, K. R.; QURAISHI, M. A.; OBOT, I. B. Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: Experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry, v. 52, p.197-210, 2017. DUTTA, A.; SAHA, S. K.; BANERJEE, P.; PATRA, A. K.; SUKUL, D. Evaluating corrosion inhibition property of some Schiff bases for mild steel in 1 M HCl: competitive effect of the heteroatom and stereochemical conformation of the molecule. RSC Advances, v.78, p. 74833, 2016. ECHEVARRIA, A.; NASCIMENTO, M. G.; GIESBRECTH, A. M.; MILLER, J.; NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal. Journal of the Brazilian Chemical Society, v. 10, p. 60-64, 1999. ESTEVES-SOUSA, A.; RODRIGUES-SANTOS, C. E.; CISTIA, C. N. D.; SILVA, D. R.; SANT’ANNA, C. M. R.; ECHEVARRIA, A. Solvent-free synthesis, DNA-topoisomerase II activity and molecular docking study of new asymmetrically N,N′-substituted ureas. Molecules, v. 17, p. 12882–12894, 2012. FARAHATI, R.; BEHZADI, H.; MOUSAVI-KHOSHDEL, S. M.; GHAFFARINEJAD, A. Evaluation of corrosion inhibition of 4-(pyridin-3-yl) thiazol-2-amine for copper in HCl by experimental and theoretical studies. Journal of Molecular Structure, v. 1205, p. 127658, 2020. FOUDA, A. S.; HASSAN, A. F.; ELMORSI, M. A.; FAYED, T. A.; ABDELHAKIM, A. Chalcones as environmentally-friendly corrosion inhibitors for stainless steel type 304 in 1 M HCl solutions. International Journal of Electrochemical Science, v. 9, p. 1298-1320, 2014. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; , G; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, .; HRATCHIAN, H. P. et al. Gaussian 09, Revision C.1, 2010. 132 GANGULY, A.; CHAKRABORTY, P.; BANERJEE, K.; CHOUDHURI, S. K. The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug resistance in cancer. European Journal of Pharmaceutical Sciences, v. 51, p. 96–104, 2014. GECE, G. The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Science, v. 50, p. 2981-2992, 2008. GHOLAMI, M.; DANAEE, I.; MADDAHY, M. H.; RASHVANDAVEI, M. Correlated ab initio and electroanalytical study on inhibition behavior of 2-mercaptobenzothiazole and its thiole–thione tautomerism effect for the corrosion of steel (API 5L X52) in sulphuric acid solution. Industrial & Engineering Chemistry Research, v. 52, p. 14875-14889, 2013. GIANNOZZI, P.; BARONI, S.; BONINI, N.; CALANDRA, M.; CAR, R.; CAVAZZONI, C.; CERESOLI, D.; CHIAROTTI, G. L. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, v. 21, p. 395502, 2009. GRIMME, S.; ANTONY, J.; EHRLICH, S.; KRIEG, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, v. 132, p. 154104, 2010. GURUPRASAD, A. M.; SACHIN, H. P.; SWETHA, G. A.; PRASANNA, B. M. Corrosion inhibition of zinc in 0.1 M hydrochloric acid medium with clotrimazole: Experimental, theoretical and quantum studies. Surfaces and Interfaces, v. 19, p. 100478, 2020. HENSLEY, A. J. R.; ZHANG, R.; WANG, Y.; MCEWEN, J. S. Tailoring the Adsorption of Benzene on PdFe Surfaces: A Density Functional Theory Study. The Journal of Physical Chemistry C, v. 117, p. 24317-24328, 2013. HERMOSO-DIAZ, I. A.; FOROOZAN, A. E.; FLORES-DE LOS RIOS, J. P.; LANDEROS-MARTINEZ, L. L.; PORCAYO-CALDERON, J.; GONZALEZ-RODRIGUEZ, J. G. Electrochemical and quantum chemical assessment of linoleic acid as a corrosion inhibitor for carbon steel in sulfuric acid solution. Journal of Molecular Structure, v. 1197, p. 535-546, 2019. HOSSEINI, M.; MERTENS, S. F. L.; GHORBANI, M.; ARSHADI, M. R. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Materials Chemistry and Physics, v. 78, p. 800-808, 2003. HOSSEINI-SARVARI, M. Nano-tube TiO2 as a new catalyst for eco-friendly synthesis of imines in sunlight. Chinese Chemical Letters, v.22, p. 547-550, 2011. ISSA, R. M.; AWAD, M. K.; ATLAM, F. M. Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Applied Surface Science, v. 255, p. 2433, 2008. 133 JENKINS, S. J. Aromatic adsorption on metals via first-principles density functional theory. Proceedings of the Royal Society A Mathematical, Physical and Engineering Science, v. 465, p. 2949-2976, 2009. JOUYBAN, A.; SOLTANPOUR, S.; CHAN, H. K. A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. International Journal of Pharmaceutics, v. 269, p. 353-360, 2004. KELEŞ, H.; KELEŞ, M. Adsorption and anticorrosion behaviour of an imine compound on low carbon steel in HCl solution at different potentials. Journal of Adhesion Science and Technology, v. 32, p. 473, 2018. KHATTABI, M.; BENHIBA, F.; TABTI, S.; DJEDOUANI, A.; EL ASSYRY, A.; TOUZANI, R.; WARAD, I.; OUDDA, H.; ZARROUK, A. Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl. Journal of Molecular Structure, v. 1196, p. 231-244, 2019. KITTEL, C.; Introduction to solid state physics, 5th Editio, John Wiley & Sons, Inc, New York, 1976. KRISHNAVENI, K.; RAVICHANDRAN, J. Effect of aqueous extract of leaves of Morinda tinctoria on corrosion inhibition of aluminium surface in HCl medium. Transactions of Nonferrous Metals Society of China, v. 24, p. 2704-2712, 2014. KUMAR, C. B. P.; MOHANA, K. N. Corrosion inhibition efficiency and adsorption characteristics of some Schiff bases at mild steel/hydrochloric acid interface. Journal of the Taiwan Institute of Chemical Engineers, v.45, p. 1031-1042, 2014. KUMARI, P. P.; SHETTY, P.; RAO, S. A.; SUNIL, D.; VISHWANATH, T. Synthesis, characterization and anticorrosion behaviour of a novel hydrazide derivative on mild steel in hydrochloric acid medium. Bulletin of Materials Science, v. 43, p. 46, 2020. LANGMUIR, I. The constitution and fundamental properties of solids and liquids. ii. Liquids. Journal of the American Chemical Society, v. 39, p. 1848-1906, 1917. LARABI, L.; HAREK, Y.; BENALI, O.; GHALEM, S. Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl. Progress in Organic Coatings, v. 54, p. 256-262, 2005. LEE, S. K.; TAN, K. W.; NG, S. W.; OOI, K. K.; ANG, K. P.; ABDAH, M. A. Zinc (II) complex with a cationic Schiff base ligand: Synthesis, characterization, and biological studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 121, p. 101– 108, 2014. LIANG, C.; LIU, Z.; LIANG, Q.; HAN, G.; HAN, J.; ZHANG, S.; FENG, X.. Synthesis of 2- aminofluorene bis-Schiff base and corrosion inhibition performance for carbon steel in HCl. Journal of Molecular Liquids, v. 277, p. 330–340, 2019. LIU, W.; RUIZ, V. G.; ZHANG, G. X.; SANTRA, B.; REN, X.; SCHEFFLER, M.; TKATCHENKO, A. Structure and energetics of benzene adsorbed on transition-metal 134 surfaces: density-functional theory with van der Waals interactions including collective substrate response. New Journal of Physics, v. 15, p.1, 2013. MAKOV, G.; PAYNE, M. C. Periodic boundary conditions in ab initio calculations. Physical Review B, v.51, p. 4014, 1995. MENDONÇA, G. L. F.; COSTA, S. N.; FREIRE, V. N.; CASCIANO, P. N. S.; CORREIA, A. N.; LIMANETO, P. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corrosion Science, v. 115, p. 41-55, 2017. MOHAMED, E. A.; HASHEM, H. E.; AZMY, E. M.; NEGM, N. A.; FARAG, A. A. Synthesis, structural analysis, and inhibition approach of novel eco-friendly chalcone derivatives on API X65 steel corrosion in acidic media assessment with DFT & MD studies. Environmental Technology & Innovation, v. 24, p. 101966, 2021. MURMU, M.; SAHA, S. K.; MURMU, N. C.; BANERJEE, P. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L −1 HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corrosion Science, v. 146, n. August 2017, p. 134–151, 2019. NAIK, V.S.; PATIL, P.S.; WONG, Q.A.; QUAH, C.K.; GUMMAGOL, N.B.; JAYANNA, H.S. Molecular structure, linear optical, second and third-order nonlinear optical properties of two non-centrosymmetric thiophene-chalcone derivatives. Journal of Molecular Structure, v.1222, p. 128901, 2020. NARENDER, T.; VENKATESWARLU, K.; NAYAK, B. V.; SARKAR, S. A new chemical access for 3’- acetyl-4’-hydroxychalcones using borontrifluoride-etherate via a regioselective Claisen-Schmidt condensation and its application in the synthesis of chalcone hybrids. Tetrahedron Letters, v. 52, p. 5794, 2011. NEESE, F. Software update: the ORCA program system, version 4.0. Interdisciplinary Review Computacional Molecule Science, v.8, p.1327, 2018. NOWAKOWSKA, Z. A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, v. 42, p. 125, 2007. OBOT, I. B.; MACDONALD, D. D.; GASEM, Z. M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corrosion Science, v. 99, p. 1-30,2015. PARR, R. G.; PEARSON, R. G. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, v. 105, p. 7512-7516, 1983. PERDEW, J. P.; ERNZERHOF, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. Journal of Chemical Physics, v. 105, p. 9982, 1996. 135 QURAISHI, M. A.; SINGH, A.; SINGH, V. K.; YADAV, D. K.; SINGH, A. K. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves. Materials Chemistry and Physics, v. 122, p. 114-122, 2010. RAMOS, N. C.; ECHEVARRIA, A.; VALBON, A.; BORTOLUZZI, A. J.; GUEDES, G. P.;RODRIGUES-SANTOS, C. E. Regioselective synthesis of imines (2-N-amine-3-N- (phenylmethylene)-5-pyridine) in water under microwave irradiation. Cogent Chemistry, v. 2, p. 1207863, 2016. SALMAN, T. A.; ZINAD, D. S.; JABER, S. H.; AL-GHEZI, M.; MAHAL, A.; TAKRIFF, M. S.; A.A. ALAMIERY, A. A. Effect of 1,3,4-thiadiazole scaffold on the corrosion inhibition of mild steel in acidic medium: An experimental and computational study. Journal of Bio- and Tribo-Corrosion, v.5, p. 48, 2019. SEIFZDEH, D.; BASHARNAVAZ, H.; BEZAATPOUR, A. A Schiff base compound as effective corrosion inhibitor for magnesium in acidic media. Materials Chemistry and Physics, v. 138, p. 794–802, 2014. SILVA, A. B. DA; D’ELIA, E.; GOMES, J. A. C. P. Carbon steel corrosion inhibition in hydrochloric acid solution using a reduced Schiff base of ethylenediamine. Corrosion Science, v. 52, p. 788-793, 2010. SINGH, A. K.; LIN, Y.; OBOT, I. B.; EBENSO, E. E. Macrocyclic inhibitor for corrosion of N80 steel in 3.5% NaCl solution saturated with CO2. Journal of Molecular Liquids, v. 219, p. 865-874, 2016 . SINGH, A.; AHAMAD, I.; QURAISHI, M.A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, v. 9, p. S1584-S1589, 2016. SINGH, A.; QURAISHI, M. A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, v. 9, p. S1584-S1589, 2016. SINGH, A. K.; THAKUR, S.; PANI, B.; SINGH, G. Green synthesis and corrosion inhibition study of 2-amino-N′-((thiophen-2-yl)methylene)benzohydrazide. New Journal of Chemistry, v. 42, p. 2113, 2018. SPENCER, M. J. S.; HUNG, A.; SNOOK, I. K.; YAROVSKY, I. Density functional theory study of the relaxation and energy of iron surfaces. Surface Science, v. 513, p. 389-398, 2002. TAYLOR, C. D. Corrosion informatics: an integrated approach to modelling corrosion. Corrosion Engineering, Science and Technology, v. 50, p. 490-508, 2015. TORRES, V. V.; AMADO, R. S.; SÁ, C. F.; FERNANDEZ, T. L.; RIEHL, C. A. S.; TORRES, A. G.; D’ELIA, E. Inhibitory action of aqueous coffee ground extracts on the corrosion of carbon steel in HCl solution. Corrosion Science, v.53, p. 2385, 2011. 136 VALBON, A.; RIBEIRO, B. F.; SOARES, M. A. F.; OLIVEIRA, M. C. C.; NEVES, M. A.; ECHEVARRIA, A. Extrato de hibisco-colibri como inibidor verde de corrosão do açocarbono em ácido sulfúrico. Química Nova. v. 42, p. 797-802, 2019. VANDERBILT, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, v. 41, p. 7892, 1990. YILDIZ, R. Adsorption and inhibition effect of 2,4-diamino-6-hydroxypyrimidine for mild steel corrosion in HCl medium: experimental and theoretical investigation. Ionics,v. 25, p. 859-870, 2018. YILDIZ, R. An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corrosion Science, v. 90, p. 544-553, 2015. YÜCE, A. O.; MERT, B. D.; KARDAŞ, G.; YAZICI, B. Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution. Corrosion Science, v. 83, p. 310-316, 2014. YURT, A.; DURAN, B.; DAL, H. An experimental and theoretical investigation on adsorption properties of some diphenolic Schiff bases as corrosion inhibitors at acidic solution/mild steel interface. Arabian Journal of Chemistry, v. 7, p. 732- 740, 2014. ZAREI, M. An efficient and green method for the synthesis of 2-azetidinones mediated by propylphosphonic anhydride. Monatshefte für Chemie - Chemical Monthly, v. 145, p. 1495–1499, 2014. ZHANG, H.; PANG, X.; GAO, K. Localized CO2 corrosion of carbon steel with different microstructures in brine solutions with an imidazoline-based inhibitor. Applied Surface Science, v. 442, p. 446-460, 2018.AHAMAD, I.; PRASAD, R.; QURAISHI, M. A. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corrosion Science, v. 52, p. 1472-1481, 2010. ALLISON, T. C.; TONG, Y. J. Application of the condensed Fukui function to predict reactivity in core–shell transition metal nanoparticles. Electrochimica Acta, v. 101, p. 334-340, 2013. AYYANNAN, G.; KARTHIKEYAN, K.; VIVEKANANTHAN, S. S.; GOPIRAMAN, M.; RATHINAVELU, A. Chemical and electrochemical investigations of high carbon steel corrosion inhibition in 10 % HCl medium by quinoline chalcones. Ionics, v. 19, p. 919–932, 2013. CARLOS, M. F. L. P.; Xavier Junior, N.F. ; NEVES, MARCELO ; BAUERFELDT, G. F ; ECHEVARRIA, A. . Synergy between Experimental and Theoretical Investigations Reveals the Anti-Corrosion Efficiency of Imine-Chalcones. Journal of the Brazilian Chemical Society, p. 1654-1669, 2021. 131 COULTHARD, G.; UNSWORTH, W, P.; TAYLOR, R. J. K.; Propylphosphonic anhydride (T3P) mediated synthesis of β-lactams from imines and aryl-substituted acetic acids. Tetrahedron Letters, v. 56, p. 3113–3116, 2015. CHAOUIKIA, A.; LGAZC, H.; SALGHIB, R.; CHAFIQ, M.; OUDDAA, H.; SHUBHALAXMID; BHATD, K. S.; CRETESCUE, I.; ALIF, I. H.; MARZOUKIF, R.; CHUNG, I. M. Assessing the impact of electron-donating-substituted chalcones on inhibition of mild steel corrosion in HCl solution: Experimental results and molecular-level insights. Colloids and Surfaces A, v. 588, p. 124366, 2020. CHUGH, B.; SINGH, A. K.; THAKUR, S.; PANI, B., PANDEY, A. K.; LGAZ, H.; CHUNG, I. M.; EBENSO, E. F. An Exploration about the Interaction of Mild Steel with Hydrochloric Acid in the Presence of N-(Benzo[d]thiazole-2-yl)-1-phenylethan-1-imines. The Journal of Physical Chemistry C, v. 123, p. 22897-22917, 2019. DOHARE, P.; ANSARI, K. R.; QURAISHI, M. A.; OBOT, I. B. Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: Experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry, v. 52, p.197-210, 2017. DUTTA, A.; SAHA, S. K.; BANERJEE, P.; PATRA, A. K.; SUKUL, D. Evaluating corrosion inhibition property of some Schiff bases for mild steel in 1 M HCl: competitive effect of the heteroatom and stereochemical conformation of the molecule. RSC Advances, v.78, p. 74833, 2016. ECHEVARRIA, A.; NASCIMENTO, M. G.; GIESBRECTH, A. M.; MILLER, J.; NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal. Journal of the Brazilian Chemical Society, v. 10, p. 60-64, 1999. ESTEVES-SOUSA, A.; RODRIGUES-SANTOS, C. E.; CISTIA, C. N. D.; SILVA, D. R.; SANT’ANNA, C. M. R.; ECHEVARRIA, A. Solvent-free synthesis, DNA-topoisomerase II activity and molecular docking study of new asymmetrically N,N′-substituted ureas. Molecules, v. 17, p. 12882–12894, 2012. FARAHATI, R.; BEHZADI, H.; MOUSAVI-KHOSHDEL, S. M.; GHAFFARINEJAD, A. Evaluation of corrosion inhibition of 4-(pyridin-3-yl) thiazol-2-amine for copper in HCl by experimental and theoretical studies. Journal of Molecular Structure, v. 1205, p. 127658, 2020. FOUDA, A. S.; HASSAN, A. F.; ELMORSI, M. A.; FAYED, T. A.; ABDELHAKIM, A. Chalcones as environmentally-friendly corrosion inhibitors for stainless steel type 304 in 1 M HCl solutions. International Journal of Electrochemical Science, v. 9, p. 1298-1320, 2014. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; , G; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, .; HRATCHIAN, H. P. et al. Gaussian 09, Revision C.1, 2010. 132 GANGULY, A.; CHAKRABORTY, P.; BANERJEE, K.; CHOUDHURI, S. K. The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug resistance in cancer. European Journal of Pharmaceutical Sciences, v. 51, p. 96–104, 2014. GECE, G. The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Science, v. 50, p. 2981-2992, 2008. GHOLAMI, M.; DANAEE, I.; MADDAHY, M. H.; RASHVANDAVEI, M. Correlated ab initio and electroanalytical study on inhibition behavior of 2-mercaptobenzothiazole and its thiole–thione tautomerism effect for the corrosion of steel (API 5L X52) in sulphuric acid solution. Industrial & Engineering Chemistry Research, v. 52, p. 14875-14889, 2013. GIANNOZZI, P.; BARONI, S.; BONINI, N.; CALANDRA, M.; CAR, R.; CAVAZZONI, C.; CERESOLI, D.; CHIAROTTI, G. L. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, v. 21, p. 395502, 2009. GRIMME, S.; ANTONY, J.; EHRLICH, S.; KRIEG, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, v. 132, p. 154104, 2010. GURUPRASAD, A. M.; SACHIN, H. P.; SWETHA, G. A.; PRASANNA, B. M. Corrosion inhibition of zinc in 0.1 M hydrochloric acid medium with clotrimazole: Experimental, theoretical and quantum studies. Surfaces and Interfaces, v. 19, p. 100478, 2020. HENSLEY, A. J. R.; ZHANG, R.; WANG, Y.; MCEWEN, J. S. Tailoring the Adsorption of Benzene on PdFe Surfaces: A Density Functional Theory Study. The Journal of Physical Chemistry C, v. 117, p. 24317-24328, 2013. HERMOSO-DIAZ, I. A.; FOROOZAN, A. E.; FLORES-DE LOS RIOS, J. P.; LANDEROS-MARTINEZ, L. L.; PORCAYO-CALDERON, J.; GONZALEZ-RODRIGUEZ, J. G. Electrochemical and quantum chemical assessment of linoleic acid as a corrosion inhibitor for carbon steel in sulfuric acid solution. Journal of Molecular Structure, v. 1197, p. 535-546, 2019. HOSSEINI, M.; MERTENS, S. F. L.; GHORBANI, M.; ARSHADI, M. R. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Materials Chemistry and Physics, v. 78, p. 800-808, 2003. HOSSEINI-SARVARI, M. Nano-tube TiO2 as a new catalyst for eco-friendly synthesis of imines in sunlight. Chinese Chemical Letters, v.22, p. 547-550, 2011. ISSA, R. M.; AWAD, M. K.; ATLAM, F. M. Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Applied Surface Science, v. 255, p. 2433, 2008. 133 JENKINS, S. J. Aromatic adsorption on metals via first-principles density functional theory. Proceedings of the Royal Society A Mathematical, Physical and Engineering Science, v. 465, p. 2949-2976, 2009. JOUYBAN, A.; SOLTANPOUR, S.; CHAN, H. K. A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. International Journal of Pharmaceutics, v. 269, p. 353-360, 2004. KELEŞ, H.; KELEŞ, M. Adsorption and anticorrosion behaviour of an imine compound on low carbon steel in HCl solution at different potentials. Journal of Adhesion Science and Technology, v. 32, p. 473, 2018. KHATTABI, M.; BENHIBA, F.; TABTI, S.; DJEDOUANI, A.; EL ASSYRY, A.; TOUZANI, R.; WARAD, I.; OUDDA, H.; ZARROUK, A. Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl. Journal of Molecular Structure, v. 1196, p. 231-244, 2019. KITTEL, C.; Introduction to solid state physics, 5th Editio, John Wiley & Sons, Inc, New York, 1976. KRISHNAVENI, K.; RAVICHANDRAN, J. Effect of aqueous extract of leaves of Morinda tinctoria on corrosion inhibition of aluminium surface in HCl medium. Transactions of Nonferrous Metals Society of China, v. 24, p. 2704-2712, 2014. KUMAR, C. B. P.; MOHANA, K. N. Corrosion inhibition efficiency and adsorption characteristics of some Schiff bases at mild steel/hydrochloric acid interface. Journal of the Taiwan Institute of Chemical Engineers, v.45, p. 1031-1042, 2014. KUMARI, P. P.; SHETTY, P.; RAO, S. A.; SUNIL, D.; VISHWANATH, T. Synthesis, characterization and anticorrosion behaviour of a novel hydrazide derivative on mild steel in hydrochloric acid medium. Bulletin of Materials Science, v. 43, p. 46, 2020. LANGMUIR, I. The constitution and fundamental properties of solids and liquids. ii. Liquids. Journal of the American Chemical Society, v. 39, p. 1848-1906, 1917. LARABI, L.; HAREK, Y.; BENALI, O.; GHALEM, S. Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl. Progress in Organic Coatings, v. 54, p. 256-262, 2005. LEE, S. K.; TAN, K. W.; NG, S. W.; OOI, K. K.; ANG, K. P.; ABDAH, M. A. Zinc (II) complex with a cationic Schiff base ligand: Synthesis, characterization, and biological studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 121, p. 101– 108, 2014. LIANG, C.; LIU, Z.; LIANG, Q.; HAN, G.; HAN, J.; ZHANG, S.; FENG, X.. Synthesis of 2- aminofluorene bis-Schiff base and corrosion inhibition performance for carbon steel in HCl. Journal of Molecular Liquids, v. 277, p. 330–340, 2019. LIU, W.; RUIZ, V. G.; ZHANG, G. X.; SANTRA, B.; REN, X.; SCHEFFLER, M.; TKATCHENKO, A. Structure and energetics of benzene adsorbed on transition-metal 134 surfaces: density-functional theory with van der Waals interactions including collective substrate response. New Journal of Physics, v. 15, p.1, 2013. MAKOV, G.; PAYNE, M. C. Periodic boundary conditions in ab initio calculations. Physical Review B, v.51, p. 4014, 1995. MENDONÇA, G. L. F.; COSTA, S. N.; FREIRE, V. N.; CASCIANO, P. N. S.; CORREIA, A. N.; LIMANETO, P. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corrosion Science, v. 115, p. 41-55, 2017. MOHAMED, E. A.; HASHEM, H. E.; AZMY, E. M.; NEGM, N. A.; FARAG, A. A. Synthesis, structural analysis, and inhibition approach of novel eco-friendly chalcone derivatives on API X65 steel corrosion in acidic media assessment with DFT & MD studies. Environmental Technology & Innovation, v. 24, p. 101966, 2021. MURMU, M.; SAHA, S. K.; MURMU, N. C.; BANERJEE, P. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L −1 HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corrosion Science, v. 146, n. August 2017, p. 134–151, 2019. NAIK, V.S.; PATIL, P.S.; WONG, Q.A.; QUAH, C.K.; GUMMAGOL, N.B.; JAYANNA, H.S. Molecular structure, linear optical, second and third-order nonlinear optical properties of two non-centrosymmetric thiophene-chalcone derivatives. Journal of Molecular Structure, v.1222, p. 128901, 2020. NARENDER, T.; VENKATESWARLU, K.; NAYAK, B. V.; SARKAR, S. A new chemical access for 3’- acetyl-4’-hydroxychalcones using borontrifluoride-etherate via a regioselective Claisen-Schmidt condensation and its application in the synthesis of chalcone hybrids. Tetrahedron Letters, v. 52, p. 5794, 2011. NEESE, F. Software update: the ORCA program system, version 4.0. Interdisciplinary Review Computacional Molecule Science, v.8, p.1327, 2018. NOWAKOWSKA, Z. A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, v. 42, p. 125, 2007. OBOT, I. B.; MACDONALD, D. D.; GASEM, Z. M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corrosion Science, v. 99, p. 1-30,2015. PARR, R. G.; PEARSON, R. G. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, v. 105, p. 7512-7516, 1983. PERDEW, J. P.; ERNZERHOF, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. Journal of Chemical Physics, v. 105, p. 9982, 1996. 135 QURAISHI, M. A.; SINGH, A.; SINGH, V. K.; YADAV, D. K.; SINGH, A. K. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves. Materials Chemistry and Physics, v. 122, p. 114-122, 2010. RAMOS, N. C.; ECHEVARRIA, A.; VALBON, A.; BORTOLUZZI, A. J.; GUEDES, G. P.;RODRIGUES-SANTOS, C. E. Regioselective synthesis of imines (2-N-amine-3-N- (phenylmethylene)-5-pyridine) in water under microwave irradiation. Cogent Chemistry, v. 2, p. 1207863, 2016. SALMAN, T. A.; ZINAD, D. S.; JABER, S. H.; AL-GHEZI, M.; MAHAL, A.; TAKRIFF, M. S.; A.A. ALAMIERY, A. A. Effect of 1,3,4-thiadiazole scaffold on the corrosion inhibition of mild steel in acidic medium: An experimental and computational study. Journal of Bio- and Tribo-Corrosion, v.5, p. 48, 2019. SEIFZDEH, D.; BASHARNAVAZ, H.; BEZAATPOUR, A. A Schiff base compound as effective corrosion inhibitor for magnesium in acidic media. Materials Chemistry and Physics, v. 138, p. 794–802, 2014. SILVA, A. B. DA; D’ELIA, E.; GOMES, J. A. C. P. Carbon steel corrosion inhibition in hydrochloric acid solution using a reduced Schiff base of ethylenediamine. Corrosion Science, v. 52, p. 788-793, 2010. SINGH, A. K.; LIN, Y.; OBOT, I. B.; EBENSO, E. E. Macrocyclic inhibitor for corrosion of N80 steel in 3.5% NaCl solution saturated with CO2. Journal of Molecular Liquids, v. 219, p. 865-874, 2016 . SINGH, A.; AHAMAD, I.; QURAISHI, M.A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, v. 9, p. S1584-S1589, 2016. SINGH, A.; QURAISHI, M. A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, v. 9, p. S1584-S1589, 2016. SINGH, A. K.; THAKUR, S.; PANI, B.; SINGH, G. Green synthesis and corrosion inhibition study of 2-amino-N′-((thiophen-2-yl)methylene)benzohydrazide. New Journal of Chemistry, v. 42, p. 2113, 2018. SPENCER, M. J. S.; HUNG, A.; SNOOK, I. K.; YAROVSKY, I. Density functional theory study of the relaxation and energy of iron surfaces. Surface Science, v. 513, p. 389-398, 2002. TAYLOR, C. D. Corrosion informatics: an integrated approach to modelling corrosion. Corrosion Engineering, Science and Technology, v. 50, p. 490-508, 2015. TORRES, V. V.; AMADO, R. S.; SÁ, C. F.; FERNANDEZ, T. L.; RIEHL, C. A. S.; TORRES, A. G.; D’ELIA, E. Inhibitory action of aqueous coffee ground extracts on the corrosion of carbon steel in HCl solution. Corrosion Science, v.53, p. 2385, 2011. 136 VALBON, A.; RIBEIRO, B. F.; SOARES, M. A. F.; OLIVEIRA, M. C. C.; NEVES,
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Química
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Repositório Institucional da UFRRJ
collection Repositório Institucional da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/16046/1/2022%20-%20Mariana%20Falc%c3%a3o%20Lopes%20Princisval%20Carlos.Pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/16046/2/license.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/16046/3/2022%20-%20Mariana%20Falc%c3%a3o%20Lopes%20Princisval%20Carlos.Pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/16046/4/2022%20-%20Mariana%20Falc%c3%a3o%20Lopes%20Princisval%20Carlos.Pdf.jpg
bitstream.checksum.fl_str_mv 899a4da71b4b515766640e60099d0883
8a4605be74aa9ea9d79846c1fba20a33
31dafd10ad543c6f5cae231d3cc81e98
e2bf8d8c4c6b57ec7f9f26a18e1b13de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br
_version_ 1810107790161608704