Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae

Detalhes bibliográficos
Autor(a) principal: Corrêa, Thaís Almeida
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/11931
Resumo: Atualmente, o controle de Rhipicephalus microplus é amplamente realizado por meio do uso de acaricidas químicos, porém o uso indevido desses produtos contribui para o desenvolvimento de populações de carrapatos resistentes, contaminação de produtos de origem animal e do meio ambiente por seus resíduos. Diante dessa situação, o controle biológico por fungos entomopatogênicos é uma alternativa promissora e que pode ser utilizada no manejo integrado para o controle de carrapatos. Metarhizium spp. é um dos fungos utilizados com reconhecida atuação no controle biológico de artrópodes. Em resposta à infecção pelo fungo, os artrópodes ativam respostas imunológicas dos carrapatos contra patógenos. No entanto, é necessário um conhecimento mais aprofundado sobre o papel do sistema imunológico de R. microplus e seus mecanismos de defesa contra uma infecção fúngica para avançar no desenvolvimento de estratégias de controle mais eficazes contra o parasita. A dopamina (DA) é uma monoamina biogênica que interliga os sistemas nervoso e imunológico, relatada para modular a fagocitose de hemócitos de insetos O presente estudo avaliou o efeito da DA na resposta imune celular e sobrevivência de R. microplus inoculado com blastosporos de M. anisopliae. Os seguintes grupos foram formados:: C (grupo não tratado), P (carrapatos inoculados com solução tampão de fosfato), D (carrapatos inoculados com 3μL de 1.025 ng/μLDA), Ma [carrapatos inoculados com M. anisopliae (3μL; 106 blastosporos/mL)], e DM [carrapatos inoculados com DA (3μL; 1.025 ng/μL) e após 20 minutos, M. anisopliae (3μL; 106 blastosporos/mL)]. E somente C, P e D para o ensaio de fagocitose. Ao analisar os efeitos da inoculação de a DA exógena: aumentou a sobrevivência das fêmeas após serem inoculadas com dopamina em associação ao fungo 72h após o tratamento; aumentou o número de hemócitos circulantes no grupo DA seguida ou não da infecção fúngica 24h após a inoculação; não influenciou o índice fagocítico de hemócitos de carrapatos desafiados com M. anisopliae; influenciou a atividade da fenoloxidase na hemolinfa onde carrapatos inoculados com DA e o fungo ou exclusivamente com DA foi maior do que em carrapatos não tratados ou inoculados apenas com o fungo, 72 h após o tratamento; foi possível detectá-la nos hemócitos de carrapatos tratados e não tratados com fungo. A análise da resposta imune de R. microplus desafiada com fungos entomopatogênicos contribui para o avanço e desenvolvimento de novas estratégias eficazes de controle biológico. Nosso estudo demonstrou pela primeira vez o sistema imune de R. Microplus sendo modulado pela ação da DA exógena
id UFRRJ-1_f81bd0e679311c211dee888c4f1a4ce1
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/11931
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Corrêa, Thaís AlmeidaGôlo, Patrícia Silva058.507.577-83http://lattes.cnpq.br/3935275742919097Angelo, Isabele da Costahttps://orcid.org/0000-0003-3698-8340http://lattes.cnpq.br/5028095543336052Gôlo, Patrícia Silvahttps://orcid.org/0000-0003-1854-7488http://lattes.cnpq.br/3935275742919097Castro, Daniele Pereira de849.375.801-91https://orcid.org/0000-0002-2827-6258http://lattes.cnpq.br/2330016995489470142.602.177-12https://orcid.org/0000-0001-6909-2925http://lattes.cnpq.br/06721232928031022023-12-22T01:58:59Z2023-12-22T01:58:59Z2021-08-27CORRÊA, Thaís Almeida. Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae. 2021. 32 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.https://rima.ufrrj.br/jspui/handle/20.500.14407/11931Atualmente, o controle de Rhipicephalus microplus é amplamente realizado por meio do uso de acaricidas químicos, porém o uso indevido desses produtos contribui para o desenvolvimento de populações de carrapatos resistentes, contaminação de produtos de origem animal e do meio ambiente por seus resíduos. Diante dessa situação, o controle biológico por fungos entomopatogênicos é uma alternativa promissora e que pode ser utilizada no manejo integrado para o controle de carrapatos. Metarhizium spp. é um dos fungos utilizados com reconhecida atuação no controle biológico de artrópodes. Em resposta à infecção pelo fungo, os artrópodes ativam respostas imunológicas dos carrapatos contra patógenos. No entanto, é necessário um conhecimento mais aprofundado sobre o papel do sistema imunológico de R. microplus e seus mecanismos de defesa contra uma infecção fúngica para avançar no desenvolvimento de estratégias de controle mais eficazes contra o parasita. A dopamina (DA) é uma monoamina biogênica que interliga os sistemas nervoso e imunológico, relatada para modular a fagocitose de hemócitos de insetos O presente estudo avaliou o efeito da DA na resposta imune celular e sobrevivência de R. microplus inoculado com blastosporos de M. anisopliae. Os seguintes grupos foram formados:: C (grupo não tratado), P (carrapatos inoculados com solução tampão de fosfato), D (carrapatos inoculados com 3μL de 1.025 ng/μLDA), Ma [carrapatos inoculados com M. anisopliae (3μL; 106 blastosporos/mL)], e DM [carrapatos inoculados com DA (3μL; 1.025 ng/μL) e após 20 minutos, M. anisopliae (3μL; 106 blastosporos/mL)]. E somente C, P e D para o ensaio de fagocitose. Ao analisar os efeitos da inoculação de a DA exógena: aumentou a sobrevivência das fêmeas após serem inoculadas com dopamina em associação ao fungo 72h após o tratamento; aumentou o número de hemócitos circulantes no grupo DA seguida ou não da infecção fúngica 24h após a inoculação; não influenciou o índice fagocítico de hemócitos de carrapatos desafiados com M. anisopliae; influenciou a atividade da fenoloxidase na hemolinfa onde carrapatos inoculados com DA e o fungo ou exclusivamente com DA foi maior do que em carrapatos não tratados ou inoculados apenas com o fungo, 72 h após o tratamento; foi possível detectá-la nos hemócitos de carrapatos tratados e não tratados com fungo. A análise da resposta imune de R. microplus desafiada com fungos entomopatogênicos contribui para o avanço e desenvolvimento de novas estratégias eficazes de controle biológico. Nosso estudo demonstrou pela primeira vez o sistema imune de R. Microplus sendo modulado pela ação da DA exógenaCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCurrently, the control of Rhipicephalus microplus widely performed through the use of chemical acaricides, but the misuse of these products contributes to the development ticks’ populations more resistant, contamination of animal products, and the environment by their residues. In this situation, biological control by entomopathogenic fungi is a promising alternative that can be used in integrated management to control ticks. Metarhizium spp. is one of the fungi used with recognized performance in the biological control of arthropods. In response to fungal infection, arthropods activate tick immune responses against pathogens. However, a greater understanding is needed of the role of the R. microplus immune system and its defense mechanisms against a fungal infection is needed to advance in the development of more effective control against the parasite. Dopamine (DA) is a biogenic monoamine that interconnects the nervous and immune systems, reported to modulate the phagocytosis of insect hemocytes. The present study evaluated the effect of DA in the cellular immune response and survival of R. microplus inoculated with M. anisopliae blastospores. The following groups were formed: C (untreated group), P (ticks inoculated with phosphate buffer solution), D (ticks inoculated with 3μL of 1.025 ng μL-1 DA), M [ticks inoculated with M. anisopliae (3μL; 106 blastospores mL-1 )], and DM [ticks inoculated with DA (3μL; 1.025 ng μL-1 ) and after 20 min, M. anisopliae (3μL; 106 blastospores mL-1 And only C, P, and D for the phagocytosis assay. By analyzing the effects of exogenous DA inoculation: it increased the survival of females after being inoculated with dopamine in association with the fungus 72h after treatment; increased the number of circulating hemocytes in the group inoculated with DA followed or not by fungal infection 24h after inoculation; did not influence the phagocytic index of hemocytes of ticks challenged with M. anisopliae; influenced the activity of phenoloxidase in hemolymph where ticks inoculated with DA and the fungus or exclusively with AD was higher than in untreated or only ticks inoculated with the fungus, 72 h after treatment; it was possible to detect it in hemocytes of ticks treated and not treated with fungus. The analysis of the immune response of R. microplus challenged with entomopathogenic fungi contributes to the advancement and development of new effective biological control strategies. Our study demonstrated for the first time the immune system of R. Microplus being modulated by the action of exogenous DAapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências VeterináriasUFRRJBrasilInstituto de VeterináriaFungos entomopatogênicosCarrapatos dos bovinosResposta imuneEntomopathogenic fungiBovine tickImmune responseMedicina VeterináriaInfluência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliaeInfluence of dopamine on the cellular immune response of Rhipicephalus microplus inoculated with Metarhizium anisopliaeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisADAMO, S. A. Stress response sculpt the insect immune system, optimizing defense in an ever-changing word. Developmental & Comparative Immunology, p.1–9, 2016. ADAMO, S.A. Why should an immune response activate the stress response? Insights from the insects (the cricket Gryllus texensis). Brain Behaviour Immunology., v.24, p.194–200, 2010. ALVES, R. T.; FARIA, M. Pequeno Manual sobre fungos entomopatogênicos. Planaltina: Embrapa Cerrados, 50p, 2010. ANGELO, I.C.; GOLO, P.S; CAMARGO, M.G.; KLUCK, G.E. G.; FOLLY, E. ; BITTENCOURT, V.R.E.P. Haemolymph Protein and Lipid Profile of Rhipicephalus (Boophilus) microplus Infected by Fungi. Transboundary and Emerging Diseases, v. 57, p. 79-83, 2010. BALI, G.K; KAUR, S. Phenoloxidase activity in haemolymph of Spodoptera litura (Fabricius) mediating immune responses challenge with entomopathogenic fungus, Beauveria bassiana (Balsamo) Vuillemin. J Entomology and Zoology Studies,v.1, p.118-123, 2013. BANUMATHI, B.; VASEEHARAN, B.; RAJASEKAR, P.; PRABHU, N.M.; RAMASAMY, P.; MURUGAN, K.; CANALE, A.; BENELLI, G. Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus ( Boophilus ) microplus – A review. Veterinary Parasitology, v. 244, p.102-110, 2017. BERNARDO, C.C; BARRETO, LP, SILVA, C; LUZ C; ARRUDA, W; FERNANDES, ÉKK. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Ticks Tick Borne Diseases, v. 9(5), p.1334–42, 2018. BERNARDO, C.C; PEREIRA-JUNIOR, R.A; LUZ, C; MASCARIN, G.M; FERNANDES, É.K.K. Differential susceptibility of blastospores and aerial conidia of entomopathogenic fungi to heat and UV-B stresses. Fungal Biology, v.124(8), p.714-722, 2020. BITENCOURT, R.O.B; MALLET, J.R;S; MESQUITA, E; GÔLO, P.S; FIOROTTI, J; BITTENCOURT, V.R.E.P, et al. Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Tropical, v.213. 2021. BOWMAN, A.S., SAUER, J.R. Tick salivary glands: function, physiology and future. Parasitology. v.129,p.67- 81, 2004. Brasília, DF: Embrapa Informação Tecnológica, 2021. Disponível em: < https://www.embrapa.br/busca-de-noticias>. BRAYNER, F.A; ARAÚJO, H.R.C; CAVALCANTI, M.G.S; ALVES, L.C; PEIXOTO, C.A. Ultrastructural characterization of the hemocytes of Culex quinquefasciatus (Diptera: Culicidae). Micron, v.36(4), p.359–67, 2005 BURESOVA, V; HAJDUSEK, O; FRANTA, Z; SOJKA, D; KOPACEK, P. IrAM-An alpha2-macroglobulin from the hard tick Ixodes ricinus: characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Developmental and Comparative Immunology, v.33, p.89–498, 2009. CAMARGO, M.G; MARCIANO, A.F; SÁ, F.A; PERINOTTO, W.M.S; QUINELATO. S; GÔLO, P.S, et al. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Vet Parasitology., v.205(1–2), p.271–6, 2014. 27 CAMARGO, M.G; NOGUEIRA, M.R.S; MARCIANO, A.F; PERINOTTO, W.M.S; COUTINHO-RODRIGUES, C.J.B; SCOTT, F.B; et al. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Vet Parasitology., v.223, p.38–42, 2016. CARVALHO, R.S. Biocontrole de moscas-das-frutas: histórico, conceitos e estratégias. Circular técnica 83 da Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas, dez., 2006. CERENIUS, L; SÖDERHÄLL, K. The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004, 198, 116-126, doi: 10.1111/j.0105-2896.2004.00116.x. CERENIUS, L; LEE, B.L; SÖDERHÄLL, K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology, v.29(6), p.263–271, 2008. CHANDLER, D; DAVIDSON, G; PELL, J.K; BALL, B.V; SHAW, K; SUNDERLAND, K.D.; Fungal biocontrol of Acari. Biocontrol Science and Technology 10, 357–384, 2000. CHANG, C.C; WU, Z.R; KUO, C.M; CHENG, W. Dopamine depresses immunity in the tiger shrimp Penaeus monodon. Fish Shellfish Immunology, v.23(1), p.24-33, 2007. DA SILVA, S.B., SAVASTANO, G., BITTENCOURT, V.R.E.P. Tipos celulares envolvidos na resposta imune de fêmeas de Boophilus microplus inoculados com Metarhizium anisopliae e Penicillium sp. Revista Brasileira de Medicina Veterinária, v.15, p. 128-131, 2006. DALZOTO, P. R.; UHRY, K. F. Controle biológico de pragas no brasil por meio de Beauveria bassiana (Bals.) Vuill. Biológico, v.71, p.37-41, 2009. DE FARIA, M.R.; WRAIGHT, S.P. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, v.43, p.237-256, 2007. DE PAULO, J.F; CAMARGO, M.G; COUTINHO-RODRIGUES, C.J.B ; MARCIANO, A.F; DE FREITAS, M.C; DA SILVA, E.M ; GÔLO, P.G; MORENA, D.D.S ; DA COSTA ANGELO, I; BITTENCOURT, V.R.E.P. Rhipicephalus microplus infected by Metarhizium: unveiling hemocyte quantification, GFP-fungi virulence, and ovary infection. Parasitology Research, v. 117, p.1847-1856, 2018. DEVOTTO, L.M.; GERDING, A.; FRANCE, A. Hongos entomopatógenos: una alternativa para la obtencion de Biopesticidas. Bioleche, v. 23, p. 30-33, 2000. EGGENBERGER, L.R; LAMOREAUX, W.J; COONS, L.B. Hemocytic encapsulation of implants in the tick Dermacentor variabilis. Experimental and Applied Acarology, v.9, p.279- 287, 1990. EJENDAL, K.F.K; MEYER, J.M, BRUST, T.F, AVRAMOVA. Insect Biochemistry and Molecular Biology, v. 42, p..846-853, 2012 FEITOSA, A.P.S; ALVES, L.C; CHAVES, M.M; VERAS, D.L; SILVA, E.M; ALLIANC, A.S.S; FRANC, I.R.S; GONC, G.G.GA; ALVES, FIMA-FILHO, J.L. Hemocytes of Rhipicephalus sanguineus (Acari: Ixodidae). Journal Of Medical Entomology, v. 52, n. 6, p.1193-1202, 2015. FEITOSA, A.P.S; CHAVES, M.M; VERAS, D.L; DE DEUS, D.M.V; PORTELA, N.C, ARAÚJO, A.R, ALVES, L.C; BRAYNER, F.A, Assessing the cellular and humoral immune response in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) infected with Leishmania infantum (Nicolle, 1908), Ticks and Tick-borne Diseases, v. 9, n. 6, p.1421-1430, 2018. 28 FERNANDES, É.K.K; BITTENCOURT, V.R.E.P; ROBERTS, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental Parasitology, v.130, p.300–305, 2012. FERNÁNDEZ-SALAS, A; ALONSO-DÍAZ, M.A; ALONSO-MORALES, R.A; LEZAMA- GUTIÉRREZ, R; RODRÍGUEZ-RODRÍGUEZ, J.C; CERVANTES-CHÁVEZ JA. Acaricidal activity of Metarhizium anisopliae isolated from paddocks in the Mexican tropics against two populations of the cattle tick Rhipicephalus microplus. Medical and Veterinary Entomology, v.31(1), p.36–43, 2017. FIOROTTI, J; GÔLO, P.S; MARCIANO, A.F; CAMARGO, M.G; ANGELO, I.C; BITTENCOURT, V.R.E.P. Disclosing hemolymph collection and inoculation of Metarhizium blastospores into Rhipicephalus microplus ticks towards invertebrate pathology studies. Journal of Visualized Experiments, v.148, p.1–7, 2019a. FIOROTTI, J.; MENNA-BARRETO, R.F.S; GÔLO, P.S; COUTINHO-RODRIGUES, C.J.B; BITENCOURT, R.O.B; SPADACCI-MORENA, D. D; ANGELO, I.C; BITTENCOURT, V.R.E.P. Ultrastructural and Cytotoxic Effects of Metarhizium robertsii Infection on Rhipicephalus microplus Hemocytes. Frontiers in Physiology, v. 10, p. 1-17, 2019b. FINKLER, C.L.L.; Controle de insetos: Uma breve revisão. Anais da Academia Pernambucana de Ciência Agronômica, v.8 e 9, p.169-189, 2011/2012. FOGAÇA, A.C; SOUSA, G; PAVANELO, D.B; ESTEVES, E; MARTINS, L.A; URBANOVÁ, V, et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Frontiers in Immunology., v.12, p.1–23, 2021. FURLONG, J; PRATA, M.C.A. Conhecimento básico para controle do carrapato-dos- bovinos. In: FURLONG, J. (Org.). Carrapatos: problemas e soluções. Juiz de Fora: Embrapa Gado de Leite. p.9-20, 2005. FREITAS, M.C., COUTINHO-RODRIGUES, C.J.B., PERINOTTO, W.M.S., NOGUEIRA, M.R.S., CHAGAS, T.T., MARCIANO, A.F., CAMARGO, M.G., QUINELATO, S., GOLO, P.S., SÁ, F., BITTENCOURT, V.R.E.P. Quantificação de hemócitos de fêmeas ingurgitadas de Rhipicephalus microplus infectadas por Beauveria bassiana sl. Revista Brasileira de Medicina Veterinária, v.37, p.63-70, 2015 GILLESPIE, J.P; BAILEY, A.M; COBB. B; VILCINSKAS, A. Fungi as elicitors of insect immune responses. Arch Insect Biochem Physiol., v.44(2), p.49–68, 2000. GONZÁLES, J.C. O carrapato dos bovinos Boophilus microplus (Can. 1887) (Revisão histórica e conceitual). A Hora Veterinária, ano 21, p.23-28, 2002. GOME ́Z-PEREZ, M.L; ROMERO-GONZALEZ, R; PLAZA-BOLANO, P; GE ́NIN, E; MARTI ́NEZ VIDAL, J.L; GARRIDO, F.A. Wide- scope analysis of pesticide and veterinary drug residues in meat matrices by high resolution MS: detection and iden- tification using Exactive-Orbitrap. Journal of Mass Spectrometry, v.49, p.27–36, 2014. GRISI, L.; LEITE, R.C.; MARTINS, J.R.S.; BARROS, A.T.M.; ANDREOTTI,R.; CANÇADO, P.H.D.; LÉON, A.A.P.; PEREIRA, J.B.; VILLELA, H.S. Reassessmente of the potential economic impacto f cattle parasites in Brazil. Brazilian Jornal of Veterinary Parasitology, v.23, p.150-156, 2014. HESKETH, H; ROY, H. E; EILENBERG, J; PELL, J. K; HAILS, R.S. Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. BioControl, v. 55, p. 55-73, 2010. 29 HIGA, L.O.S.; GARCIA, M.V.; BARROS, J.C.; KOLLER, W. W.; ANDREOTTI, R. Acaricide Resistance Status of the Rhipicephalus microplus in Brazil: A Literature Overview. Medicinal Chemistry, v. 5, p. 326-333, 2015. HU, G.; ST. LEGER, J. Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Applied and Environmental Microbiology, v. 68, p. 6383-6387, 2002. HUMBER, R.A. Identification of entomopathogenic fungi, In: Lacey, L. A. (Ed.), Manual of techniques in insect pathology, second ed. Academic Press, Inc., California, USA, p. 151- 187, 2012. IVERSEN, S.D., IVERSEN, L.L. Dopamine: 50 years in perspective. Trends Neurosciense, v.30, p.188-193,2007. KADOTA, K; SATOH, E; OCHIAI, M; INOUE, N; TSUJI, N; IGARASHI. I, et al. Existence of phenol oxidase in the argasid tick Ornithodoros moubata. Parasitology Research, v.88(8), p.781–784, 2002. KERNIF, T; LEULMI, H; RAOULT, D; PAROLA, P. Emerging Tick-Borne Bacterial Pathogens. Microbiol Spectrum., v.4(3), p.10, 2016. KIM, D; ŠIMO, L; VANCOVÁ, M; URBAN, J; PARK, Y. Neural and endocrine regulation of osmoregulatory organs in tick: recent discoveries and implications. General Comparative Endocrinology., v.278, p.42–9, 2019. KLAFKE, G.M; CASTRO-JANER, E; MENDES, M.C; NAMINDOME, A; SCHUMAKER, T.T.S. Applicability of in vitro bioassays for the diagnosis of ivermectin resistance in Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitology, v.184(2–4), p.212–20, 2012. KLAFKE, G; WEBSTER, A; DALLAGNOL, B; PRADEL, E; SILVA, J; DE LA CANAL, L.H; BECKER, M; OSO ́RIO, M.F, et al. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul State, Southern Brazil. Ticks Tick Borne Diseases., v.8(1), p.73–80, 2017. KONG, H; DONG, C; TIAN, Z; MAO, N; WANG, C; CHENG, Y; ZHANG, L; JIANG, X; LUO, L. Altered immunity in crowded Mythimna separata is mediated by octopamine and dopamine. Scientific Reports, v. 8, p.1-10, 2018. KUKLINSKI, N.J; BERGLUND, E.C; ENGELBREKSSON, J. EWING, A.G. Determination of salsolinol, norsalsolinol, and twenty-one biogenic amines using micellar electrokinetic capillary chromatography-electrochemical detection. Electrophoresis., v.31(11), p.1886–93, 2010. KOPACEK, P; HAJDUSEK, O; BURESOVA, V; DAFFRE, S. Tick innate immunity. Advances in Experimental Medicine and Biology, v. 708, p.137-162, 2010. LAINO, A; LAVARÍAS, S; SUÁREZ, G; LINO, A. CUNNINGHAM, M. Characterization of phenoloxidase activity from spider Polybetes pythagoriucus Hemocyanin, v.323, p.547-555, 2015. LEMAITRE, B.; HOFFMANN, J. The host defense of Drosophila melanogaster Annual Review of Immunology, v.25, p.697–743, 2007. LOOSOVÁ, G; JINDRÁK, L; KOPÁČEK, P. Mortality caused by experimental infection with the yeast Candida haemulonii in the adults of Ornithodoros moubata (Acarina:Argasidae). Folia Parasitology, v.48(2), p.149–53, 2001. 30 LING, E., YU, X.Q. Prophenoloxidase binds to the surface of hemocytes and is involved in hemocyte melanization in Manduca sexta. Insect Biochemistry and Molecular Biology., v.35, p.1356-1366,2005. LIU, H; JIRAVANICHPAISAL, P; CERENIUS, L; Lee, B.L; SÖDERHÄLL, I; SÖDERHÄLL, K. Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus. Journal of Biology Chemistry, v.282, p.33593–33598, 2007. MAINA, U.M; GALADIMA, I.B; GAMBO, F.M; ZAKARIA. D. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies, v.6(1), p. 27-32, 2018. MARCIANO, A.F; MASCARIN, G.M; FRANCO, R.F.F; GOLO, P.S, JARONSKI, S.T; FERNANDES, É.K.K, et al. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control. Scientific Reports,v.11(1), p.1-11, 2021. MARMARAS. V.J; LAMPROPOULOU, M. Regulators and signalling in insect haemocyte immunity. Cellular Signalling, v.21, p.186-195, 2009. MARRONE, P.G. Barriers to adoption of biological control agents and biological pesticides. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, v.2, p.1–12, 2007. MASCARIN, G.M; LOPES, R.B; DELALIBERA, Í; FERNANDES, É.K.K; LUZ, C; FARIA, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology., v.165, p.46–53, 2019. MELLO, C.B; GARCIA, E.S; RATCLIFFE, N.A; AZAMBUJA, P. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus. Journal Invertebrate Pathology. v.65, p.261–8, 1995. MESQUITA, E; MARCIANO, A.F; CORVAL, A.R.C; FIOROTTI, J; CORRÊA, T.A; QUINELATO, S, et al. Efficacy of a native isolate of the entomopathogenic fungus Metarhizium anisopliae against larval tick outbreaks under semifield conditions. BioControl., v.65(3), p.353–62, 2020. MEYER, J.M., EJENDAL, K.F., AVRAMOVA, L.V., GARLAND-KUNTZ, E.E., GIRALDO-CALDERON, G.I., BRUST, T.F., WATTS, V.J., HILL, C.A., 2012. A "genome- to-lead" approach for insec- ticide discovery: pharmacological characterization and screening of Aedes aegypti D(1)-like dopamine receptors. PLoS Neglected Tropical Diseases 6, 2012. MONTEIRO, S.G. Parasitologia na Medicina Veterinária. 2a. ed. Rio de janeiro: Editora Gen/Roca. v.1, 370p, 2017. MURREL, A.; BARKER, S.C. Synonymy of Boophilus Crutice, 1891 with Rhipicephalus Koch, 1844 (Acari: Ixodidae). Systems Parasitology, v.56, p.169-172, 2003. MUSTARD, J. A.; BEGGS, K. T.; MERCER, A. R. Molecular biology of the invertebrate dopamine receptors. Physiology, v.59, p.103–117, 2005. NAPPI, A.J; CHRISTENSEN, B.M. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochemistry and Molecular Biology, v.35(5), p.443–59, 2005. 31 NAPOLITANO, A; DI DONATO, P; PROTA, G. New regulatory mechanisms in the biosynthesis of pheomelanins: rearrangement vs. redox exchange reaction routes of a transient 2H-1,4-benzothia- zine-o-quinonimine intermediate. Acta Gen. v.1475, p.47–54, 2000. NATION, J.L. Insect Physiology and Biochemistry. 3. Ed. University of Florida, Gainesville, 672p, 2016. PAL, S; ST LEGER, R.J; WU, L.P. Fungal peptide destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster, Journal Biology Chemical, v. 282, p. 8969-8977, 2007. PEÑALVER, E.; ARILLO, A.; DELCLÒS, X.; PERIS, D.; GRIMALDI, D.A.; ANDERSON, S.R.; NASCIMBENE, P.C.; FUENTE, R.P. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nature Communications, v.8, n.1924, 2017. PÉREZ-GONZÁLEZ, V.H; GUZMÁN-FRANCO, A.W; ALATORRE-ROSAS, R; HERNÁNDEZ-LÓPEZ, J; HERNÁNDEZ-LÓPEZ, A; CARRILLO-BENÍTEZ, M.G; BAVERSTOCK, J. Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils, Journal of Invertebrate Pathology, v.119, p.54- 56, 2004. PEREIRA, L.S; OLIVEIRA ,P.L; BARJA-FIDALGO. C; DAFFRE, S. Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Experimental Parasitology, v.99, p.66-72, 2001. RECK, J; KLAFKE, G.M; WEBSTER, A; DALL’AGNOL, B; SCHEFFER, R; SOUZA, U.A, et al. First report of fluazuron resistance in Rhipicephalus microplus: A field tick population resistant to six classes of acaricides. Vet Parasitology., v.201(1–2):128–36, 2014. RODRIGUEZ-VIVAS, R.I; JONSSON, N.N; BHUSHAN, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology Research, v.117, p.3–29, 2017. RODRIGUES, J.; BRAYNER, F.A.; ALVES, L.C; DIXIT, R.; BARILLAS-MURY, C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science, v.329, p.1353-1355, 2010. SCHOLTE, E.J; KNOLS, B.G.J; SAMSON, R.A; TAKKEN, W. Entomopathogenic fungi for mosquito control: A review. Journal of Insect Science, v. 4, p. 19-24, 2004. SHAH, P.A.; PELL, J.K. Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, v. 61, p. 413-423, 2003. SHAW, D; WANG, X; BROWN, L. et al. Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nature Communication, v. 8, 2017. SILVA, R.Z.; NEVES, P.M.O.J.; SANTORO, P.H.; CAVAGUCHI, S.A.; Efeito de Agroquímicos à Base de Óleo Mineral e Vegetal sobre a Viabilidade dos Fungos Entomopatogênicos Beauveria bassiana (Bals.) Vuillemin, Metarhizium anisopliae (Metsch.) Sorokin e Paecilomyces sp. Bainier. BioAssay, v.1 p.1-5, 2006. SIMO, L; KOCI, J; ZITNAN, D; PARK, Y. Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands. PLoS One, v.6, 2011. SODERHALL LL, K.; CERENIUS, L. Role of the prophenoloxidase- activating system in invertebrate immunity. Current Opinion in Immunology, v.10, p.23–28, 1998. 32 ST LEGER, R. J. Studies on adaptations of Metarhizium anisopliae to life in the soil.Journal of Invertebrate Pathology, v. 98, p.271-276, 2008. STANLEY, D.; MILLER, J.; TUNAZ, H. Eicosanoid Actions in Insect Immunity. Journal of Innate Immunity, v.1, n.4, 2009. STERBA, J; DUPEJOVA, J; FISER, M; VANCOVA, M.; GRUBHOFFER, L. Fibrinogen- related proteins in ixodid ticks. Parasites and Vectors, v.4, p.127, 2011. TAN, J., XU, M., ZHANG, K., WANG, X., CHEN, S., LI, T., XIANG, Z., CUI, H. Characterization of hemocytes proliferation in larval silkworm Bombyx mori. Journal of Insect Physiology, v.59, p. 595-603, 2013. URBANOVA, V; HAJDUŠEK, O; MONDEKOVA, H.H; ŠIMA, R; KOPAČEK, P. Tick thioester-containing proteins and phagocytosis do not affect transmission of Borrelia afzelii from the competent Vector Ixodes ricinus. Frontiars in Cell Infect Microbiology, v.7(73), 2017. URBANOVÁ, V; HARTMANN, D; GRUNCLOVÁ, L; ŠÍMA, R; FLEMMING, T; HAJDUŠE, O. IrFC – An Ixodes ricinus injury-responsive molecule related to Limulus Factor C. Developmental & Comparative Immunology, v.46, p.439-447, 2014. VALICENTE, F.H. Controle biológico de pragas com entomopatogênos. Informe Agropécuário, v.30 p.48-55, 2009. VEGA, F. E.; MEYLING, N.; LUANGSA-ARD, J.; BLACKWELL, M. Fungal Entomopathogens. Insect Pathology, p.171-220, 2012. WU, S.F; XU, G; STANLEY, D; HUANG, J; YE, G.Y. Dopamine modulates hemocyte phagocytosis via a D1-like receptor in the rice stem borer, Chilo suppressalis. Scientific Reports., v.5, p.1–13, 2015. ZHIOUA, E; YEH, M.T; LEBRUN, R.A. Assay for phenoloxidase activity in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. Journal Parasitology, v.83(3), p.553-4, 1997.https://tede.ufrrj.br/retrieve/74537/2021%20-%20Tha%c3%ads%20Almeida%20Corr%c3%aaa.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6871Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-08-25T15:56:09Z No. of bitstreams: 1 2021 - Thaís Almeida Corrêa.pdf: 568205 bytes, checksum: 4d2870d1011eddee292c0556d7b009fb (MD5)Made available in DSpace on 2023-08-25T15:56:09Z (GMT). No. of bitstreams: 1 2021 - Thaís Almeida Corrêa.pdf: 568205 bytes, checksum: 4d2870d1011eddee292c0556d7b009fb (MD5) Previous issue date: 2021-08-27info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Thaís Almeida Corrêa.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11931/1/2021%20-%20Tha%c3%ads%20Almeida%20Corr%c3%aaa.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2021 - Thaís Almeida Corrêa.pdf.txtExtracted Texttext/plain96653https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11931/2/2021%20-%20Tha%c3%ads%20Almeida%20Corr%c3%aaa.pdf.txt71a45e0d0a3c288adef2b7ce567e8b4cMD52ORIGINAL2021 - Thaís Almeida Corrêa.pdf2021 - Thaís Almeida Corrêaapplication/pdf568205https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11931/3/2021%20-%20Tha%c3%ads%20Almeida%20Corr%c3%aaa.pdf4d2870d1011eddee292c0556d7b009fbMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11931/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/119312023-12-21 22:58:59.752oai:rima.ufrrj.br:20.500.14407/11931Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:58:59Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae
dc.title.alternative.eng.fl_str_mv Influence of dopamine on the cellular immune response of Rhipicephalus microplus inoculated with Metarhizium anisopliae
title Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae
spellingShingle Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae
Corrêa, Thaís Almeida
Fungos entomopatogênicos
Carrapatos dos bovinos
Resposta imune
Entomopathogenic fungi
Bovine tick
Immune response
Medicina Veterinária
title_short Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae
title_full Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae
title_fullStr Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae
title_full_unstemmed Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae
title_sort Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae
author Corrêa, Thaís Almeida
author_facet Corrêa, Thaís Almeida
author_role author
dc.contributor.author.fl_str_mv Corrêa, Thaís Almeida
dc.contributor.advisor1.fl_str_mv Gôlo, Patrícia Silva
dc.contributor.advisor1ID.fl_str_mv 058.507.577-83
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3935275742919097
dc.contributor.referee1.fl_str_mv Angelo, Isabele da Costa
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0003-3698-8340
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5028095543336052
dc.contributor.referee2.fl_str_mv Gôlo, Patrícia Silva
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0003-1854-7488
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3935275742919097
dc.contributor.referee3.fl_str_mv Castro, Daniele Pereira de
dc.contributor.referee3ID.fl_str_mv 849.375.801-91
https://orcid.org/0000-0002-2827-6258
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/2330016995489470
dc.contributor.authorID.fl_str_mv 142.602.177-12
https://orcid.org/0000-0001-6909-2925
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0672123292803102
contributor_str_mv Gôlo, Patrícia Silva
Angelo, Isabele da Costa
Gôlo, Patrícia Silva
Castro, Daniele Pereira de
dc.subject.por.fl_str_mv Fungos entomopatogênicos
Carrapatos dos bovinos
Resposta imune
topic Fungos entomopatogênicos
Carrapatos dos bovinos
Resposta imune
Entomopathogenic fungi
Bovine tick
Immune response
Medicina Veterinária
dc.subject.eng.fl_str_mv Entomopathogenic fungi
Bovine tick
Immune response
dc.subject.cnpq.fl_str_mv Medicina Veterinária
description Atualmente, o controle de Rhipicephalus microplus é amplamente realizado por meio do uso de acaricidas químicos, porém o uso indevido desses produtos contribui para o desenvolvimento de populações de carrapatos resistentes, contaminação de produtos de origem animal e do meio ambiente por seus resíduos. Diante dessa situação, o controle biológico por fungos entomopatogênicos é uma alternativa promissora e que pode ser utilizada no manejo integrado para o controle de carrapatos. Metarhizium spp. é um dos fungos utilizados com reconhecida atuação no controle biológico de artrópodes. Em resposta à infecção pelo fungo, os artrópodes ativam respostas imunológicas dos carrapatos contra patógenos. No entanto, é necessário um conhecimento mais aprofundado sobre o papel do sistema imunológico de R. microplus e seus mecanismos de defesa contra uma infecção fúngica para avançar no desenvolvimento de estratégias de controle mais eficazes contra o parasita. A dopamina (DA) é uma monoamina biogênica que interliga os sistemas nervoso e imunológico, relatada para modular a fagocitose de hemócitos de insetos O presente estudo avaliou o efeito da DA na resposta imune celular e sobrevivência de R. microplus inoculado com blastosporos de M. anisopliae. Os seguintes grupos foram formados:: C (grupo não tratado), P (carrapatos inoculados com solução tampão de fosfato), D (carrapatos inoculados com 3μL de 1.025 ng/μLDA), Ma [carrapatos inoculados com M. anisopliae (3μL; 106 blastosporos/mL)], e DM [carrapatos inoculados com DA (3μL; 1.025 ng/μL) e após 20 minutos, M. anisopliae (3μL; 106 blastosporos/mL)]. E somente C, P e D para o ensaio de fagocitose. Ao analisar os efeitos da inoculação de a DA exógena: aumentou a sobrevivência das fêmeas após serem inoculadas com dopamina em associação ao fungo 72h após o tratamento; aumentou o número de hemócitos circulantes no grupo DA seguida ou não da infecção fúngica 24h após a inoculação; não influenciou o índice fagocítico de hemócitos de carrapatos desafiados com M. anisopliae; influenciou a atividade da fenoloxidase na hemolinfa onde carrapatos inoculados com DA e o fungo ou exclusivamente com DA foi maior do que em carrapatos não tratados ou inoculados apenas com o fungo, 72 h após o tratamento; foi possível detectá-la nos hemócitos de carrapatos tratados e não tratados com fungo. A análise da resposta imune de R. microplus desafiada com fungos entomopatogênicos contribui para o avanço e desenvolvimento de novas estratégias eficazes de controle biológico. Nosso estudo demonstrou pela primeira vez o sistema imune de R. Microplus sendo modulado pela ação da DA exógena
publishDate 2021
dc.date.issued.fl_str_mv 2021-08-27
dc.date.accessioned.fl_str_mv 2023-12-22T01:58:59Z
dc.date.available.fl_str_mv 2023-12-22T01:58:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CORRÊA, Thaís Almeida. Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae. 2021. 32 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/11931
identifier_str_mv CORRÊA, Thaís Almeida. Influência da dopamina na resposta imune celular de Rhipicephalus microplus inoculados com Metarhizium anisopliae. 2021. 32 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/11931
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ADAMO, S. A. Stress response sculpt the insect immune system, optimizing defense in an ever-changing word. Developmental & Comparative Immunology, p.1–9, 2016. ADAMO, S.A. Why should an immune response activate the stress response? Insights from the insects (the cricket Gryllus texensis). Brain Behaviour Immunology., v.24, p.194–200, 2010. ALVES, R. T.; FARIA, M. Pequeno Manual sobre fungos entomopatogênicos. Planaltina: Embrapa Cerrados, 50p, 2010. ANGELO, I.C.; GOLO, P.S; CAMARGO, M.G.; KLUCK, G.E. G.; FOLLY, E. ; BITTENCOURT, V.R.E.P. Haemolymph Protein and Lipid Profile of Rhipicephalus (Boophilus) microplus Infected by Fungi. Transboundary and Emerging Diseases, v. 57, p. 79-83, 2010. BALI, G.K; KAUR, S. Phenoloxidase activity in haemolymph of Spodoptera litura (Fabricius) mediating immune responses challenge with entomopathogenic fungus, Beauveria bassiana (Balsamo) Vuillemin. J Entomology and Zoology Studies,v.1, p.118-123, 2013. BANUMATHI, B.; VASEEHARAN, B.; RAJASEKAR, P.; PRABHU, N.M.; RAMASAMY, P.; MURUGAN, K.; CANALE, A.; BENELLI, G. Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus ( Boophilus ) microplus – A review. Veterinary Parasitology, v. 244, p.102-110, 2017. BERNARDO, C.C; BARRETO, LP, SILVA, C; LUZ C; ARRUDA, W; FERNANDES, ÉKK. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Ticks Tick Borne Diseases, v. 9(5), p.1334–42, 2018. BERNARDO, C.C; PEREIRA-JUNIOR, R.A; LUZ, C; MASCARIN, G.M; FERNANDES, É.K.K. Differential susceptibility of blastospores and aerial conidia of entomopathogenic fungi to heat and UV-B stresses. Fungal Biology, v.124(8), p.714-722, 2020. BITENCOURT, R.O.B; MALLET, J.R;S; MESQUITA, E; GÔLO, P.S; FIOROTTI, J; BITTENCOURT, V.R.E.P, et al. Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Tropical, v.213. 2021. BOWMAN, A.S., SAUER, J.R. Tick salivary glands: function, physiology and future. Parasitology. v.129,p.67- 81, 2004. Brasília, DF: Embrapa Informação Tecnológica, 2021. Disponível em: < https://www.embrapa.br/busca-de-noticias>. BRAYNER, F.A; ARAÚJO, H.R.C; CAVALCANTI, M.G.S; ALVES, L.C; PEIXOTO, C.A. Ultrastructural characterization of the hemocytes of Culex quinquefasciatus (Diptera: Culicidae). Micron, v.36(4), p.359–67, 2005 BURESOVA, V; HAJDUSEK, O; FRANTA, Z; SOJKA, D; KOPACEK, P. IrAM-An alpha2-macroglobulin from the hard tick Ixodes ricinus: characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Developmental and Comparative Immunology, v.33, p.89–498, 2009. CAMARGO, M.G; MARCIANO, A.F; SÁ, F.A; PERINOTTO, W.M.S; QUINELATO. S; GÔLO, P.S, et al. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Vet Parasitology., v.205(1–2), p.271–6, 2014. 27 CAMARGO, M.G; NOGUEIRA, M.R.S; MARCIANO, A.F; PERINOTTO, W.M.S; COUTINHO-RODRIGUES, C.J.B; SCOTT, F.B; et al. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Vet Parasitology., v.223, p.38–42, 2016. CARVALHO, R.S. Biocontrole de moscas-das-frutas: histórico, conceitos e estratégias. Circular técnica 83 da Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas, dez., 2006. CERENIUS, L; SÖDERHÄLL, K. The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004, 198, 116-126, doi: 10.1111/j.0105-2896.2004.00116.x. CERENIUS, L; LEE, B.L; SÖDERHÄLL, K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology, v.29(6), p.263–271, 2008. CHANDLER, D; DAVIDSON, G; PELL, J.K; BALL, B.V; SHAW, K; SUNDERLAND, K.D.; Fungal biocontrol of Acari. Biocontrol Science and Technology 10, 357–384, 2000. CHANG, C.C; WU, Z.R; KUO, C.M; CHENG, W. Dopamine depresses immunity in the tiger shrimp Penaeus monodon. Fish Shellfish Immunology, v.23(1), p.24-33, 2007. DA SILVA, S.B., SAVASTANO, G., BITTENCOURT, V.R.E.P. Tipos celulares envolvidos na resposta imune de fêmeas de Boophilus microplus inoculados com Metarhizium anisopliae e Penicillium sp. Revista Brasileira de Medicina Veterinária, v.15, p. 128-131, 2006. DALZOTO, P. R.; UHRY, K. F. Controle biológico de pragas no brasil por meio de Beauveria bassiana (Bals.) Vuill. Biológico, v.71, p.37-41, 2009. DE FARIA, M.R.; WRAIGHT, S.P. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, v.43, p.237-256, 2007. DE PAULO, J.F; CAMARGO, M.G; COUTINHO-RODRIGUES, C.J.B ; MARCIANO, A.F; DE FREITAS, M.C; DA SILVA, E.M ; GÔLO, P.G; MORENA, D.D.S ; DA COSTA ANGELO, I; BITTENCOURT, V.R.E.P. Rhipicephalus microplus infected by Metarhizium: unveiling hemocyte quantification, GFP-fungi virulence, and ovary infection. Parasitology Research, v. 117, p.1847-1856, 2018. DEVOTTO, L.M.; GERDING, A.; FRANCE, A. Hongos entomopatógenos: una alternativa para la obtencion de Biopesticidas. Bioleche, v. 23, p. 30-33, 2000. EGGENBERGER, L.R; LAMOREAUX, W.J; COONS, L.B. Hemocytic encapsulation of implants in the tick Dermacentor variabilis. Experimental and Applied Acarology, v.9, p.279- 287, 1990. EJENDAL, K.F.K; MEYER, J.M, BRUST, T.F, AVRAMOVA. Insect Biochemistry and Molecular Biology, v. 42, p..846-853, 2012 FEITOSA, A.P.S; ALVES, L.C; CHAVES, M.M; VERAS, D.L; SILVA, E.M; ALLIANC, A.S.S; FRANC, I.R.S; GONC, G.G.GA; ALVES, FIMA-FILHO, J.L. Hemocytes of Rhipicephalus sanguineus (Acari: Ixodidae). Journal Of Medical Entomology, v. 52, n. 6, p.1193-1202, 2015. FEITOSA, A.P.S; CHAVES, M.M; VERAS, D.L; DE DEUS, D.M.V; PORTELA, N.C, ARAÚJO, A.R, ALVES, L.C; BRAYNER, F.A, Assessing the cellular and humoral immune response in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) infected with Leishmania infantum (Nicolle, 1908), Ticks and Tick-borne Diseases, v. 9, n. 6, p.1421-1430, 2018. 28 FERNANDES, É.K.K; BITTENCOURT, V.R.E.P; ROBERTS, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental Parasitology, v.130, p.300–305, 2012. FERNÁNDEZ-SALAS, A; ALONSO-DÍAZ, M.A; ALONSO-MORALES, R.A; LEZAMA- GUTIÉRREZ, R; RODRÍGUEZ-RODRÍGUEZ, J.C; CERVANTES-CHÁVEZ JA. Acaricidal activity of Metarhizium anisopliae isolated from paddocks in the Mexican tropics against two populations of the cattle tick Rhipicephalus microplus. Medical and Veterinary Entomology, v.31(1), p.36–43, 2017. FIOROTTI, J; GÔLO, P.S; MARCIANO, A.F; CAMARGO, M.G; ANGELO, I.C; BITTENCOURT, V.R.E.P. Disclosing hemolymph collection and inoculation of Metarhizium blastospores into Rhipicephalus microplus ticks towards invertebrate pathology studies. Journal of Visualized Experiments, v.148, p.1–7, 2019a. FIOROTTI, J.; MENNA-BARRETO, R.F.S; GÔLO, P.S; COUTINHO-RODRIGUES, C.J.B; BITENCOURT, R.O.B; SPADACCI-MORENA, D. D; ANGELO, I.C; BITTENCOURT, V.R.E.P. Ultrastructural and Cytotoxic Effects of Metarhizium robertsii Infection on Rhipicephalus microplus Hemocytes. Frontiers in Physiology, v. 10, p. 1-17, 2019b. FINKLER, C.L.L.; Controle de insetos: Uma breve revisão. Anais da Academia Pernambucana de Ciência Agronômica, v.8 e 9, p.169-189, 2011/2012. FOGAÇA, A.C; SOUSA, G; PAVANELO, D.B; ESTEVES, E; MARTINS, L.A; URBANOVÁ, V, et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Frontiers in Immunology., v.12, p.1–23, 2021. FURLONG, J; PRATA, M.C.A. Conhecimento básico para controle do carrapato-dos- bovinos. In: FURLONG, J. (Org.). Carrapatos: problemas e soluções. Juiz de Fora: Embrapa Gado de Leite. p.9-20, 2005. FREITAS, M.C., COUTINHO-RODRIGUES, C.J.B., PERINOTTO, W.M.S., NOGUEIRA, M.R.S., CHAGAS, T.T., MARCIANO, A.F., CAMARGO, M.G., QUINELATO, S., GOLO, P.S., SÁ, F., BITTENCOURT, V.R.E.P. Quantificação de hemócitos de fêmeas ingurgitadas de Rhipicephalus microplus infectadas por Beauveria bassiana sl. Revista Brasileira de Medicina Veterinária, v.37, p.63-70, 2015 GILLESPIE, J.P; BAILEY, A.M; COBB. B; VILCINSKAS, A. Fungi as elicitors of insect immune responses. Arch Insect Biochem Physiol., v.44(2), p.49–68, 2000. GONZÁLES, J.C. O carrapato dos bovinos Boophilus microplus (Can. 1887) (Revisão histórica e conceitual). A Hora Veterinária, ano 21, p.23-28, 2002. GOME ́Z-PEREZ, M.L; ROMERO-GONZALEZ, R; PLAZA-BOLANO, P; GE ́NIN, E; MARTI ́NEZ VIDAL, J.L; GARRIDO, F.A. Wide- scope analysis of pesticide and veterinary drug residues in meat matrices by high resolution MS: detection and iden- tification using Exactive-Orbitrap. Journal of Mass Spectrometry, v.49, p.27–36, 2014. GRISI, L.; LEITE, R.C.; MARTINS, J.R.S.; BARROS, A.T.M.; ANDREOTTI,R.; CANÇADO, P.H.D.; LÉON, A.A.P.; PEREIRA, J.B.; VILLELA, H.S. Reassessmente of the potential economic impacto f cattle parasites in Brazil. Brazilian Jornal of Veterinary Parasitology, v.23, p.150-156, 2014. HESKETH, H; ROY, H. E; EILENBERG, J; PELL, J. K; HAILS, R.S. Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. BioControl, v. 55, p. 55-73, 2010. 29 HIGA, L.O.S.; GARCIA, M.V.; BARROS, J.C.; KOLLER, W. W.; ANDREOTTI, R. Acaricide Resistance Status of the Rhipicephalus microplus in Brazil: A Literature Overview. Medicinal Chemistry, v. 5, p. 326-333, 2015. HU, G.; ST. LEGER, J. Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Applied and Environmental Microbiology, v. 68, p. 6383-6387, 2002. HUMBER, R.A. Identification of entomopathogenic fungi, In: Lacey, L. A. (Ed.), Manual of techniques in insect pathology, second ed. Academic Press, Inc., California, USA, p. 151- 187, 2012. IVERSEN, S.D., IVERSEN, L.L. Dopamine: 50 years in perspective. Trends Neurosciense, v.30, p.188-193,2007. KADOTA, K; SATOH, E; OCHIAI, M; INOUE, N; TSUJI, N; IGARASHI. I, et al. Existence of phenol oxidase in the argasid tick Ornithodoros moubata. Parasitology Research, v.88(8), p.781–784, 2002. KERNIF, T; LEULMI, H; RAOULT, D; PAROLA, P. Emerging Tick-Borne Bacterial Pathogens. Microbiol Spectrum., v.4(3), p.10, 2016. KIM, D; ŠIMO, L; VANCOVÁ, M; URBAN, J; PARK, Y. Neural and endocrine regulation of osmoregulatory organs in tick: recent discoveries and implications. General Comparative Endocrinology., v.278, p.42–9, 2019. KLAFKE, G.M; CASTRO-JANER, E; MENDES, M.C; NAMINDOME, A; SCHUMAKER, T.T.S. Applicability of in vitro bioassays for the diagnosis of ivermectin resistance in Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitology, v.184(2–4), p.212–20, 2012. KLAFKE, G; WEBSTER, A; DALLAGNOL, B; PRADEL, E; SILVA, J; DE LA CANAL, L.H; BECKER, M; OSO ́RIO, M.F, et al. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul State, Southern Brazil. Ticks Tick Borne Diseases., v.8(1), p.73–80, 2017. KONG, H; DONG, C; TIAN, Z; MAO, N; WANG, C; CHENG, Y; ZHANG, L; JIANG, X; LUO, L. Altered immunity in crowded Mythimna separata is mediated by octopamine and dopamine. Scientific Reports, v. 8, p.1-10, 2018. KUKLINSKI, N.J; BERGLUND, E.C; ENGELBREKSSON, J. EWING, A.G. Determination of salsolinol, norsalsolinol, and twenty-one biogenic amines using micellar electrokinetic capillary chromatography-electrochemical detection. Electrophoresis., v.31(11), p.1886–93, 2010. KOPACEK, P; HAJDUSEK, O; BURESOVA, V; DAFFRE, S. Tick innate immunity. Advances in Experimental Medicine and Biology, v. 708, p.137-162, 2010. LAINO, A; LAVARÍAS, S; SUÁREZ, G; LINO, A. CUNNINGHAM, M. Characterization of phenoloxidase activity from spider Polybetes pythagoriucus Hemocyanin, v.323, p.547-555, 2015. LEMAITRE, B.; HOFFMANN, J. The host defense of Drosophila melanogaster Annual Review of Immunology, v.25, p.697–743, 2007. LOOSOVÁ, G; JINDRÁK, L; KOPÁČEK, P. Mortality caused by experimental infection with the yeast Candida haemulonii in the adults of Ornithodoros moubata (Acarina:Argasidae). Folia Parasitology, v.48(2), p.149–53, 2001. 30 LING, E., YU, X.Q. Prophenoloxidase binds to the surface of hemocytes and is involved in hemocyte melanization in Manduca sexta. Insect Biochemistry and Molecular Biology., v.35, p.1356-1366,2005. LIU, H; JIRAVANICHPAISAL, P; CERENIUS, L; Lee, B.L; SÖDERHÄLL, I; SÖDERHÄLL, K. Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus. Journal of Biology Chemistry, v.282, p.33593–33598, 2007. MAINA, U.M; GALADIMA, I.B; GAMBO, F.M; ZAKARIA. D. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies, v.6(1), p. 27-32, 2018. MARCIANO, A.F; MASCARIN, G.M; FRANCO, R.F.F; GOLO, P.S, JARONSKI, S.T; FERNANDES, É.K.K, et al. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control. Scientific Reports,v.11(1), p.1-11, 2021. MARMARAS. V.J; LAMPROPOULOU, M. Regulators and signalling in insect haemocyte immunity. Cellular Signalling, v.21, p.186-195, 2009. MARRONE, P.G. Barriers to adoption of biological control agents and biological pesticides. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, v.2, p.1–12, 2007. MASCARIN, G.M; LOPES, R.B; DELALIBERA, Í; FERNANDES, É.K.K; LUZ, C; FARIA, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology., v.165, p.46–53, 2019. MELLO, C.B; GARCIA, E.S; RATCLIFFE, N.A; AZAMBUJA, P. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus. Journal Invertebrate Pathology. v.65, p.261–8, 1995. MESQUITA, E; MARCIANO, A.F; CORVAL, A.R.C; FIOROTTI, J; CORRÊA, T.A; QUINELATO, S, et al. Efficacy of a native isolate of the entomopathogenic fungus Metarhizium anisopliae against larval tick outbreaks under semifield conditions. BioControl., v.65(3), p.353–62, 2020. MEYER, J.M., EJENDAL, K.F., AVRAMOVA, L.V., GARLAND-KUNTZ, E.E., GIRALDO-CALDERON, G.I., BRUST, T.F., WATTS, V.J., HILL, C.A., 2012. A "genome- to-lead" approach for insec- ticide discovery: pharmacological characterization and screening of Aedes aegypti D(1)-like dopamine receptors. PLoS Neglected Tropical Diseases 6, 2012. MONTEIRO, S.G. Parasitologia na Medicina Veterinária. 2a. ed. Rio de janeiro: Editora Gen/Roca. v.1, 370p, 2017. MURREL, A.; BARKER, S.C. Synonymy of Boophilus Crutice, 1891 with Rhipicephalus Koch, 1844 (Acari: Ixodidae). Systems Parasitology, v.56, p.169-172, 2003. MUSTARD, J. A.; BEGGS, K. T.; MERCER, A. R. Molecular biology of the invertebrate dopamine receptors. Physiology, v.59, p.103–117, 2005. NAPPI, A.J; CHRISTENSEN, B.M. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochemistry and Molecular Biology, v.35(5), p.443–59, 2005. 31 NAPOLITANO, A; DI DONATO, P; PROTA, G. New regulatory mechanisms in the biosynthesis of pheomelanins: rearrangement vs. redox exchange reaction routes of a transient 2H-1,4-benzothia- zine-o-quinonimine intermediate. Acta Gen. v.1475, p.47–54, 2000. NATION, J.L. Insect Physiology and Biochemistry. 3. Ed. University of Florida, Gainesville, 672p, 2016. PAL, S; ST LEGER, R.J; WU, L.P. Fungal peptide destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster, Journal Biology Chemical, v. 282, p. 8969-8977, 2007. PEÑALVER, E.; ARILLO, A.; DELCLÒS, X.; PERIS, D.; GRIMALDI, D.A.; ANDERSON, S.R.; NASCIMBENE, P.C.; FUENTE, R.P. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nature Communications, v.8, n.1924, 2017. PÉREZ-GONZÁLEZ, V.H; GUZMÁN-FRANCO, A.W; ALATORRE-ROSAS, R; HERNÁNDEZ-LÓPEZ, J; HERNÁNDEZ-LÓPEZ, A; CARRILLO-BENÍTEZ, M.G; BAVERSTOCK, J. Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils, Journal of Invertebrate Pathology, v.119, p.54- 56, 2004. PEREIRA, L.S; OLIVEIRA ,P.L; BARJA-FIDALGO. C; DAFFRE, S. Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Experimental Parasitology, v.99, p.66-72, 2001. RECK, J; KLAFKE, G.M; WEBSTER, A; DALL’AGNOL, B; SCHEFFER, R; SOUZA, U.A, et al. First report of fluazuron resistance in Rhipicephalus microplus: A field tick population resistant to six classes of acaricides. Vet Parasitology., v.201(1–2):128–36, 2014. RODRIGUEZ-VIVAS, R.I; JONSSON, N.N; BHUSHAN, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology Research, v.117, p.3–29, 2017. RODRIGUES, J.; BRAYNER, F.A.; ALVES, L.C; DIXIT, R.; BARILLAS-MURY, C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science, v.329, p.1353-1355, 2010. SCHOLTE, E.J; KNOLS, B.G.J; SAMSON, R.A; TAKKEN, W. Entomopathogenic fungi for mosquito control: A review. Journal of Insect Science, v. 4, p. 19-24, 2004. SHAH, P.A.; PELL, J.K. Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, v. 61, p. 413-423, 2003. SHAW, D; WANG, X; BROWN, L. et al. Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nature Communication, v. 8, 2017. SILVA, R.Z.; NEVES, P.M.O.J.; SANTORO, P.H.; CAVAGUCHI, S.A.; Efeito de Agroquímicos à Base de Óleo Mineral e Vegetal sobre a Viabilidade dos Fungos Entomopatogênicos Beauveria bassiana (Bals.) Vuillemin, Metarhizium anisopliae (Metsch.) Sorokin e Paecilomyces sp. Bainier. BioAssay, v.1 p.1-5, 2006. SIMO, L; KOCI, J; ZITNAN, D; PARK, Y. Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands. PLoS One, v.6, 2011. SODERHALL LL, K.; CERENIUS, L. Role of the prophenoloxidase- activating system in invertebrate immunity. Current Opinion in Immunology, v.10, p.23–28, 1998. 32 ST LEGER, R. J. Studies on adaptations of Metarhizium anisopliae to life in the soil.Journal of Invertebrate Pathology, v. 98, p.271-276, 2008. STANLEY, D.; MILLER, J.; TUNAZ, H. Eicosanoid Actions in Insect Immunity. Journal of Innate Immunity, v.1, n.4, 2009. STERBA, J; DUPEJOVA, J; FISER, M; VANCOVA, M.; GRUBHOFFER, L. Fibrinogen- related proteins in ixodid ticks. Parasites and Vectors, v.4, p.127, 2011. TAN, J., XU, M., ZHANG, K., WANG, X., CHEN, S., LI, T., XIANG, Z., CUI, H. Characterization of hemocytes proliferation in larval silkworm Bombyx mori. Journal of Insect Physiology, v.59, p. 595-603, 2013. URBANOVA, V; HAJDUŠEK, O; MONDEKOVA, H.H; ŠIMA, R; KOPAČEK, P. Tick thioester-containing proteins and phagocytosis do not affect transmission of Borrelia afzelii from the competent Vector Ixodes ricinus. Frontiars in Cell Infect Microbiology, v.7(73), 2017. URBANOVÁ, V; HARTMANN, D; GRUNCLOVÁ, L; ŠÍMA, R; FLEMMING, T; HAJDUŠE, O. IrFC – An Ixodes ricinus injury-responsive molecule related to Limulus Factor C. Developmental & Comparative Immunology, v.46, p.439-447, 2014. VALICENTE, F.H. Controle biológico de pragas com entomopatogênos. Informe Agropécuário, v.30 p.48-55, 2009. VEGA, F. E.; MEYLING, N.; LUANGSA-ARD, J.; BLACKWELL, M. Fungal Entomopathogens. Insect Pathology, p.171-220, 2012. WU, S.F; XU, G; STANLEY, D; HUANG, J; YE, G.Y. Dopamine modulates hemocyte phagocytosis via a D1-like receptor in the rice stem borer, Chilo suppressalis. Scientific Reports., v.5, p.1–13, 2015. ZHIOUA, E; YEH, M.T; LEBRUN, R.A. Assay for phenoloxidase activity in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. Journal Parasitology, v.83(3), p.553-4, 1997.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Veterinárias
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Veterinária
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11931/1/2021%20-%20Tha%c3%ads%20Almeida%20Corr%c3%aaa.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11931/2/2021%20-%20Tha%c3%ads%20Almeida%20Corr%c3%aaa.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11931/3/2021%20-%20Tha%c3%ads%20Almeida%20Corr%c3%aaa.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11931/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
71a45e0d0a3c288adef2b7ce567e8b4c
4d2870d1011eddee292c0556d7b009fb
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107957481832448