Restrição de Fourier em conjuntos de Salem

Detalhes bibliográficos
Autor(a) principal: Melo, Thiago Guimarães
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/17457
Resumo: In this work, we show how the s−energy Is(µ) of a Borel measure µ compactly supported is related to the Hausdorff dimension of supp(µ). Using the distributional Fourier transform of the Riesz kernel, we relate Is(µ) to µ^. In this way, we show that Hausdorff dimension and Fourier transforms of measures are closely linked concepts, which is translated into the Fourier dimension. For the construction of examples, we made a study of surface measures. More precisely, we use weak convergence of measures to calculate the Fourier transform of the surface measure in the sphere. In addition, we use the asymptotic behavior of Bessel’s functions to show that it has a rapid decay. More generally, we study oscillatory integrals and apply the results to obtain the decay of the Fourier transform of the intrinsec measure of a compact regular surface with l non-zero principal curvatures. In addition, we use Hausdorff dimension concept to show that the decay of such a measure is optimal. We approach the restriction conjecture in the sphere and use the Knapp Example to get required range. We have dealt with the Stein-Tomas Theorem and obtained it as a consequence of the Littman Theorem. We use the techniques of Carleson-Sjölin to exhibit the proof of the restriction conjecture in the plane. We finish this dissertation by presenting the Mockenhaupt-Mitsis Theorem, which generalizes the Stein-Tomas Theorem, without the end-point. In addition, we present some consequences of the same observed by Mitsis. We briefly deal with the construction of a measure supported on a Salem set, which satisfies the hypotheses of the Mockenhaupt-Mitsis Theorem.
id UFS-2_336e5de159be5415970a9eef0684f6cf
oai_identifier_str oai:ufs.br:riufs/17457
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Melo, Thiago GuimarãesAlmeida, Marcelo Fernandes de2023-04-20T17:47:03Z2023-04-20T17:47:03Z2021-05-12MELO, Thiago Guimarães. Restrição de Fourier em conjuntos de Salem. 2021. 277 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021.http://ri.ufs.br/jspui/handle/riufs/17457In this work, we show how the s−energy Is(µ) of a Borel measure µ compactly supported is related to the Hausdorff dimension of supp(µ). Using the distributional Fourier transform of the Riesz kernel, we relate Is(µ) to µ^. In this way, we show that Hausdorff dimension and Fourier transforms of measures are closely linked concepts, which is translated into the Fourier dimension. For the construction of examples, we made a study of surface measures. More precisely, we use weak convergence of measures to calculate the Fourier transform of the surface measure in the sphere. In addition, we use the asymptotic behavior of Bessel’s functions to show that it has a rapid decay. More generally, we study oscillatory integrals and apply the results to obtain the decay of the Fourier transform of the intrinsec measure of a compact regular surface with l non-zero principal curvatures. In addition, we use Hausdorff dimension concept to show that the decay of such a measure is optimal. We approach the restriction conjecture in the sphere and use the Knapp Example to get required range. We have dealt with the Stein-Tomas Theorem and obtained it as a consequence of the Littman Theorem. We use the techniques of Carleson-Sjölin to exhibit the proof of the restriction conjecture in the plane. We finish this dissertation by presenting the Mockenhaupt-Mitsis Theorem, which generalizes the Stein-Tomas Theorem, without the end-point. In addition, we present some consequences of the same observed by Mitsis. We briefly deal with the construction of a measure supported on a Salem set, which satisfies the hypotheses of the Mockenhaupt-Mitsis Theorem.Neste trabalho, mostramos como a s−energia Is(µ) de uma medida de Borel µ com suporte compacto se relaciona com a dimensão de Hausdorff de supp(µ). Por meio da transformada de Fourier distribucional do Núcleo de Riesz, relacionamos Is(µ) com µ^. Com isto, mostramos que dimensão de Hausdorff e transformada de Fourier de medidas são conceitos intimamente ligados, o que é traduzido na dimensão de Fourier. Para a construção de exemplos, fizemos um estudo de medidas de superfícies. Mais precisamente, utilizamos convergência fraca de medidas para calcular a transformada de Fourier da medida de superfície na esfera. Além disso, utilizamos o comportamento assintótico das funções de Bessel para mostrar que tal tem um decaimento rápido. Mais geralmente, estudamos integrais oscilatórias e aplicamos os resultados para obter o decaimento da transformada de Fourier da medida intrínseca a uma superfície regular compacta com um número l de curvaturas principais não nulas. Além disso, usamos o conceito de dimensão de Hausdorff para mostrar que o decaimento de tal medida é ótimo. Abordamos a conjectura da restrição na esfera e usamos o Exemplo de Knapp para chegar ao range necessário. Tratamos do Teorema de Stein-Tomas e obtivemos o mesmo como consequência do Teorema de Littman. Usamos as técnicas de Carleson-Sjölin para exibir a prova da conjectura da restrição no plano. Finalizamos esta dissertação apresentando o Teorema de Mockenhaupt-Mitsis, o qual generaliza o Teorema de Stein-Tomas, sem o end-point. Além disso, apresentamos algumas consequências do mesmo observadas por Mitsis. Brevemente versamos sobre a construção de uma medida suportada num conjunto de Salem, a qual satisfaz as hipóteses do Teorema de Mockenhaupt-Mitsis.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão CristóvãoporMatemáticaTransformadas de FourierSequências (matemática)Restrição de FourierDimensão de HausdorffS-energia de medidasDimensão de FourierConjuntos de SalemFourier restrictionHausdorff dimensionS-energy of measuresFourier dimensionSalem setsCIENCIAS EXATAS E DA TERRA::MATEMATICARestrição de Fourier em conjuntos de Saleminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em MatemáticaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/17457/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALTHIAGO_GUIMARAES_MELO.pdfTHIAGO_GUIMARAES_MELO.pdfapplication/pdf3136652https://ri.ufs.br/jspui/bitstream/riufs/17457/2/THIAGO_GUIMARAES_MELO.pdf7a1241898658e642c9a8068f935472fcMD52TEXTTHIAGO_GUIMARAES_MELO.pdf.txtTHIAGO_GUIMARAES_MELO.pdf.txtExtracted texttext/plain562650https://ri.ufs.br/jspui/bitstream/riufs/17457/3/THIAGO_GUIMARAES_MELO.pdf.txt0c2b6e9c124d5e4e0fd06d3620ab3d82MD53THUMBNAILTHIAGO_GUIMARAES_MELO.pdf.jpgTHIAGO_GUIMARAES_MELO.pdf.jpgGenerated Thumbnailimage/jpeg1442https://ri.ufs.br/jspui/bitstream/riufs/17457/4/THIAGO_GUIMARAES_MELO.pdf.jpg0c74cb24f4c92dfdad953210095fcd6aMD54riufs/174572023-04-20 14:47:03.329oai:ufs.br:riufs/17457TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-04-20T17:47:03Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Restrição de Fourier em conjuntos de Salem
title Restrição de Fourier em conjuntos de Salem
spellingShingle Restrição de Fourier em conjuntos de Salem
Melo, Thiago Guimarães
Matemática
Transformadas de Fourier
Sequências (matemática)
Restrição de Fourier
Dimensão de Hausdorff
S-energia de medidas
Dimensão de Fourier
Conjuntos de Salem
Fourier restriction
Hausdorff dimension
S-energy of measures
Fourier dimension
Salem sets
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Restrição de Fourier em conjuntos de Salem
title_full Restrição de Fourier em conjuntos de Salem
title_fullStr Restrição de Fourier em conjuntos de Salem
title_full_unstemmed Restrição de Fourier em conjuntos de Salem
title_sort Restrição de Fourier em conjuntos de Salem
author Melo, Thiago Guimarães
author_facet Melo, Thiago Guimarães
author_role author
dc.contributor.author.fl_str_mv Melo, Thiago Guimarães
dc.contributor.advisor1.fl_str_mv Almeida, Marcelo Fernandes de
contributor_str_mv Almeida, Marcelo Fernandes de
dc.subject.por.fl_str_mv Matemática
Transformadas de Fourier
Sequências (matemática)
Restrição de Fourier
Dimensão de Hausdorff
S-energia de medidas
Dimensão de Fourier
Conjuntos de Salem
topic Matemática
Transformadas de Fourier
Sequências (matemática)
Restrição de Fourier
Dimensão de Hausdorff
S-energia de medidas
Dimensão de Fourier
Conjuntos de Salem
Fourier restriction
Hausdorff dimension
S-energy of measures
Fourier dimension
Salem sets
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Fourier restriction
Hausdorff dimension
S-energy of measures
Fourier dimension
Salem sets
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this work, we show how the s−energy Is(µ) of a Borel measure µ compactly supported is related to the Hausdorff dimension of supp(µ). Using the distributional Fourier transform of the Riesz kernel, we relate Is(µ) to µ^. In this way, we show that Hausdorff dimension and Fourier transforms of measures are closely linked concepts, which is translated into the Fourier dimension. For the construction of examples, we made a study of surface measures. More precisely, we use weak convergence of measures to calculate the Fourier transform of the surface measure in the sphere. In addition, we use the asymptotic behavior of Bessel’s functions to show that it has a rapid decay. More generally, we study oscillatory integrals and apply the results to obtain the decay of the Fourier transform of the intrinsec measure of a compact regular surface with l non-zero principal curvatures. In addition, we use Hausdorff dimension concept to show that the decay of such a measure is optimal. We approach the restriction conjecture in the sphere and use the Knapp Example to get required range. We have dealt with the Stein-Tomas Theorem and obtained it as a consequence of the Littman Theorem. We use the techniques of Carleson-Sjölin to exhibit the proof of the restriction conjecture in the plane. We finish this dissertation by presenting the Mockenhaupt-Mitsis Theorem, which generalizes the Stein-Tomas Theorem, without the end-point. In addition, we present some consequences of the same observed by Mitsis. We briefly deal with the construction of a measure supported on a Salem set, which satisfies the hypotheses of the Mockenhaupt-Mitsis Theorem.
publishDate 2021
dc.date.issued.fl_str_mv 2021-05-12
dc.date.accessioned.fl_str_mv 2023-04-20T17:47:03Z
dc.date.available.fl_str_mv 2023-04-20T17:47:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MELO, Thiago Guimarães. Restrição de Fourier em conjuntos de Salem. 2021. 277 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/17457
identifier_str_mv MELO, Thiago Guimarães. Restrição de Fourier em conjuntos de Salem. 2021. 277 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021.
url http://ri.ufs.br/jspui/handle/riufs/17457
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Matemática
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/17457/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/17457/2/THIAGO_GUIMARAES_MELO.pdf
https://ri.ufs.br/jspui/bitstream/riufs/17457/3/THIAGO_GUIMARAES_MELO.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/17457/4/THIAGO_GUIMARAES_MELO.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
7a1241898658e642c9a8068f935472fc
0c2b6e9c124d5e4e0fd06d3620ab3d82
0c74cb24f4c92dfdad953210095fcd6a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110678798958592