Restrição de Fourier em conjuntos de Salem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | http://ri.ufs.br/jspui/handle/riufs/17457 |
Resumo: | In this work, we show how the s−energy Is(µ) of a Borel measure µ compactly supported is related to the Hausdorff dimension of supp(µ). Using the distributional Fourier transform of the Riesz kernel, we relate Is(µ) to µ^. In this way, we show that Hausdorff dimension and Fourier transforms of measures are closely linked concepts, which is translated into the Fourier dimension. For the construction of examples, we made a study of surface measures. More precisely, we use weak convergence of measures to calculate the Fourier transform of the surface measure in the sphere. In addition, we use the asymptotic behavior of Bessel’s functions to show that it has a rapid decay. More generally, we study oscillatory integrals and apply the results to obtain the decay of the Fourier transform of the intrinsec measure of a compact regular surface with l non-zero principal curvatures. In addition, we use Hausdorff dimension concept to show that the decay of such a measure is optimal. We approach the restriction conjecture in the sphere and use the Knapp Example to get required range. We have dealt with the Stein-Tomas Theorem and obtained it as a consequence of the Littman Theorem. We use the techniques of Carleson-Sjölin to exhibit the proof of the restriction conjecture in the plane. We finish this dissertation by presenting the Mockenhaupt-Mitsis Theorem, which generalizes the Stein-Tomas Theorem, without the end-point. In addition, we present some consequences of the same observed by Mitsis. We briefly deal with the construction of a measure supported on a Salem set, which satisfies the hypotheses of the Mockenhaupt-Mitsis Theorem. |
id |
UFS-2_336e5de159be5415970a9eef0684f6cf |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/17457 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Melo, Thiago GuimarãesAlmeida, Marcelo Fernandes de2023-04-20T17:47:03Z2023-04-20T17:47:03Z2021-05-12MELO, Thiago Guimarães. Restrição de Fourier em conjuntos de Salem. 2021. 277 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021.http://ri.ufs.br/jspui/handle/riufs/17457In this work, we show how the s−energy Is(µ) of a Borel measure µ compactly supported is related to the Hausdorff dimension of supp(µ). Using the distributional Fourier transform of the Riesz kernel, we relate Is(µ) to µ^. In this way, we show that Hausdorff dimension and Fourier transforms of measures are closely linked concepts, which is translated into the Fourier dimension. For the construction of examples, we made a study of surface measures. More precisely, we use weak convergence of measures to calculate the Fourier transform of the surface measure in the sphere. In addition, we use the asymptotic behavior of Bessel’s functions to show that it has a rapid decay. More generally, we study oscillatory integrals and apply the results to obtain the decay of the Fourier transform of the intrinsec measure of a compact regular surface with l non-zero principal curvatures. In addition, we use Hausdorff dimension concept to show that the decay of such a measure is optimal. We approach the restriction conjecture in the sphere and use the Knapp Example to get required range. We have dealt with the Stein-Tomas Theorem and obtained it as a consequence of the Littman Theorem. We use the techniques of Carleson-Sjölin to exhibit the proof of the restriction conjecture in the plane. We finish this dissertation by presenting the Mockenhaupt-Mitsis Theorem, which generalizes the Stein-Tomas Theorem, without the end-point. In addition, we present some consequences of the same observed by Mitsis. We briefly deal with the construction of a measure supported on a Salem set, which satisfies the hypotheses of the Mockenhaupt-Mitsis Theorem.Neste trabalho, mostramos como a s−energia Is(µ) de uma medida de Borel µ com suporte compacto se relaciona com a dimensão de Hausdorff de supp(µ). Por meio da transformada de Fourier distribucional do Núcleo de Riesz, relacionamos Is(µ) com µ^. Com isto, mostramos que dimensão de Hausdorff e transformada de Fourier de medidas são conceitos intimamente ligados, o que é traduzido na dimensão de Fourier. Para a construção de exemplos, fizemos um estudo de medidas de superfícies. Mais precisamente, utilizamos convergência fraca de medidas para calcular a transformada de Fourier da medida de superfície na esfera. Além disso, utilizamos o comportamento assintótico das funções de Bessel para mostrar que tal tem um decaimento rápido. Mais geralmente, estudamos integrais oscilatórias e aplicamos os resultados para obter o decaimento da transformada de Fourier da medida intrínseca a uma superfície regular compacta com um número l de curvaturas principais não nulas. Além disso, usamos o conceito de dimensão de Hausdorff para mostrar que o decaimento de tal medida é ótimo. Abordamos a conjectura da restrição na esfera e usamos o Exemplo de Knapp para chegar ao range necessário. Tratamos do Teorema de Stein-Tomas e obtivemos o mesmo como consequência do Teorema de Littman. Usamos as técnicas de Carleson-Sjölin para exibir a prova da conjectura da restrição no plano. Finalizamos esta dissertação apresentando o Teorema de Mockenhaupt-Mitsis, o qual generaliza o Teorema de Stein-Tomas, sem o end-point. Além disso, apresentamos algumas consequências do mesmo observadas por Mitsis. Brevemente versamos sobre a construção de uma medida suportada num conjunto de Salem, a qual satisfaz as hipóteses do Teorema de Mockenhaupt-Mitsis.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão CristóvãoporMatemáticaTransformadas de FourierSequências (matemática)Restrição de FourierDimensão de HausdorffS-energia de medidasDimensão de FourierConjuntos de SalemFourier restrictionHausdorff dimensionS-energy of measuresFourier dimensionSalem setsCIENCIAS EXATAS E DA TERRA::MATEMATICARestrição de Fourier em conjuntos de Saleminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em MatemáticaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/17457/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALTHIAGO_GUIMARAES_MELO.pdfTHIAGO_GUIMARAES_MELO.pdfapplication/pdf3136652https://ri.ufs.br/jspui/bitstream/riufs/17457/2/THIAGO_GUIMARAES_MELO.pdf7a1241898658e642c9a8068f935472fcMD52TEXTTHIAGO_GUIMARAES_MELO.pdf.txtTHIAGO_GUIMARAES_MELO.pdf.txtExtracted texttext/plain562650https://ri.ufs.br/jspui/bitstream/riufs/17457/3/THIAGO_GUIMARAES_MELO.pdf.txt0c2b6e9c124d5e4e0fd06d3620ab3d82MD53THUMBNAILTHIAGO_GUIMARAES_MELO.pdf.jpgTHIAGO_GUIMARAES_MELO.pdf.jpgGenerated Thumbnailimage/jpeg1442https://ri.ufs.br/jspui/bitstream/riufs/17457/4/THIAGO_GUIMARAES_MELO.pdf.jpg0c74cb24f4c92dfdad953210095fcd6aMD54riufs/174572023-04-20 14:47:03.329oai:ufs.br:riufs/17457TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-04-20T17:47:03Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Restrição de Fourier em conjuntos de Salem |
title |
Restrição de Fourier em conjuntos de Salem |
spellingShingle |
Restrição de Fourier em conjuntos de Salem Melo, Thiago Guimarães Matemática Transformadas de Fourier Sequências (matemática) Restrição de Fourier Dimensão de Hausdorff S-energia de medidas Dimensão de Fourier Conjuntos de Salem Fourier restriction Hausdorff dimension S-energy of measures Fourier dimension Salem sets CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Restrição de Fourier em conjuntos de Salem |
title_full |
Restrição de Fourier em conjuntos de Salem |
title_fullStr |
Restrição de Fourier em conjuntos de Salem |
title_full_unstemmed |
Restrição de Fourier em conjuntos de Salem |
title_sort |
Restrição de Fourier em conjuntos de Salem |
author |
Melo, Thiago Guimarães |
author_facet |
Melo, Thiago Guimarães |
author_role |
author |
dc.contributor.author.fl_str_mv |
Melo, Thiago Guimarães |
dc.contributor.advisor1.fl_str_mv |
Almeida, Marcelo Fernandes de |
contributor_str_mv |
Almeida, Marcelo Fernandes de |
dc.subject.por.fl_str_mv |
Matemática Transformadas de Fourier Sequências (matemática) Restrição de Fourier Dimensão de Hausdorff S-energia de medidas Dimensão de Fourier Conjuntos de Salem |
topic |
Matemática Transformadas de Fourier Sequências (matemática) Restrição de Fourier Dimensão de Hausdorff S-energia de medidas Dimensão de Fourier Conjuntos de Salem Fourier restriction Hausdorff dimension S-energy of measures Fourier dimension Salem sets CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Fourier restriction Hausdorff dimension S-energy of measures Fourier dimension Salem sets |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work, we show how the s−energy Is(µ) of a Borel measure µ compactly supported is related to the Hausdorff dimension of supp(µ). Using the distributional Fourier transform of the Riesz kernel, we relate Is(µ) to µ^. In this way, we show that Hausdorff dimension and Fourier transforms of measures are closely linked concepts, which is translated into the Fourier dimension. For the construction of examples, we made a study of surface measures. More precisely, we use weak convergence of measures to calculate the Fourier transform of the surface measure in the sphere. In addition, we use the asymptotic behavior of Bessel’s functions to show that it has a rapid decay. More generally, we study oscillatory integrals and apply the results to obtain the decay of the Fourier transform of the intrinsec measure of a compact regular surface with l non-zero principal curvatures. In addition, we use Hausdorff dimension concept to show that the decay of such a measure is optimal. We approach the restriction conjecture in the sphere and use the Knapp Example to get required range. We have dealt with the Stein-Tomas Theorem and obtained it as a consequence of the Littman Theorem. We use the techniques of Carleson-Sjölin to exhibit the proof of the restriction conjecture in the plane. We finish this dissertation by presenting the Mockenhaupt-Mitsis Theorem, which generalizes the Stein-Tomas Theorem, without the end-point. In addition, we present some consequences of the same observed by Mitsis. We briefly deal with the construction of a measure supported on a Salem set, which satisfies the hypotheses of the Mockenhaupt-Mitsis Theorem. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-05-12 |
dc.date.accessioned.fl_str_mv |
2023-04-20T17:47:03Z |
dc.date.available.fl_str_mv |
2023-04-20T17:47:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MELO, Thiago Guimarães. Restrição de Fourier em conjuntos de Salem. 2021. 277 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021. |
dc.identifier.uri.fl_str_mv |
http://ri.ufs.br/jspui/handle/riufs/17457 |
identifier_str_mv |
MELO, Thiago Guimarães. Restrição de Fourier em conjuntos de Salem. 2021. 277 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021. |
url |
http://ri.ufs.br/jspui/handle/riufs/17457 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Matemática |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/17457/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/17457/2/THIAGO_GUIMARAES_MELO.pdf https://ri.ufs.br/jspui/bitstream/riufs/17457/3/THIAGO_GUIMARAES_MELO.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/17457/4/THIAGO_GUIMARAES_MELO.pdf.jpg |
bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c 7a1241898658e642c9a8068f935472fc 0c2b6e9c124d5e4e0fd06d3620ab3d82 0c74cb24f4c92dfdad953210095fcd6a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110678798958592 |