Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais

Detalhes bibliográficos
Autor(a) principal: Silva, Lana Thaís Santos
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: https://ri.ufs.br/jspui/handle/riufs/18477
Resumo: This work aims to identify what knowledge and arguments are evidenced in the teaching of rational numbers in the process of initial teacher training, observing possible relationships between academic mathematics addressed in higher education courses and school mathematics worked in Basic Education with respect to the teaching of students rational numbers. The participants were students and professors of the classroom courses in Mathematics Degree at the Federal University of Sergipe (Universidade Federal de Sergipe – UFS) and the Federal Institute of Education, Science and Technology of Sergipe (Instituto Federal de Educação, Ciência e Tecnologia de Sergipe – IFS). This was a qualitative research, and the data were collected through the application of questionnaires, bibliographic review, documents from the undergraduate courses at UFS and IFS, interviews and records in the field diary carried out during the meetings. Regarding knowledge, we considered the categories of Ball, Thames and Phelps (2008) which, supported by Shulman's ideas (1986), indicate the knowledge necessary to teach Mathematics. As for the argumentation, we are based on the model of Sales (2011) and Attie (2016), which point out the categories of explanative and justificative argumentation. The analysis of the instruments applied was based on Content Analysis (CA), following the guidelines of Bardin (2011). Observing our data, we found that it is common for undergraduate students to use Explanatory Argumentation to argue procedures related to rational numbers. When asked why some processes are valid, many were unable to provide a justification. Therefore, it was noticeable that there are difficulties for students in using argumentation in the mathematical procedures in question, to validate properties. In this way, we demonstrate that there is a need for training that provides and enhances the process of legitimacy of mathematical concepts and that invests in the argumentative process of undergraduate Mathematics students.
id UFS-2_44711fe7838f9036c209b98054d0ecbc
oai_identifier_str oai:ufs.br:riufs/18477
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Silva, Lana Thaís SantosAttie, João Paulo2023-10-06T20:42:03Z2023-10-06T20:42:03Z2023-03-14SILVA, Lana Thaís Santos. Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais. 2023. 105 f. Dissertação (Mestrado em Ensino de Ciências e Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2023.https://ri.ufs.br/jspui/handle/riufs/18477This work aims to identify what knowledge and arguments are evidenced in the teaching of rational numbers in the process of initial teacher training, observing possible relationships between academic mathematics addressed in higher education courses and school mathematics worked in Basic Education with respect to the teaching of students rational numbers. The participants were students and professors of the classroom courses in Mathematics Degree at the Federal University of Sergipe (Universidade Federal de Sergipe – UFS) and the Federal Institute of Education, Science and Technology of Sergipe (Instituto Federal de Educação, Ciência e Tecnologia de Sergipe – IFS). This was a qualitative research, and the data were collected through the application of questionnaires, bibliographic review, documents from the undergraduate courses at UFS and IFS, interviews and records in the field diary carried out during the meetings. Regarding knowledge, we considered the categories of Ball, Thames and Phelps (2008) which, supported by Shulman's ideas (1986), indicate the knowledge necessary to teach Mathematics. As for the argumentation, we are based on the model of Sales (2011) and Attie (2016), which point out the categories of explanative and justificative argumentation. The analysis of the instruments applied was based on Content Analysis (CA), following the guidelines of Bardin (2011). Observing our data, we found that it is common for undergraduate students to use Explanatory Argumentation to argue procedures related to rational numbers. When asked why some processes are valid, many were unable to provide a justification. Therefore, it was noticeable that there are difficulties for students in using argumentation in the mathematical procedures in question, to validate properties. In this way, we demonstrate that there is a need for training that provides and enhances the process of legitimacy of mathematical concepts and that invests in the argumentative process of undergraduate Mathematics students.Este trabalho teve como objetivo identificar quais conhecimentos e argumentos para o ensino dos números racionais evidenciados no processo de formação inicial dos professores, observando possíveis relações entre a matemática acadêmica abordada nos cursos superiores e a matemática escolar trabalhada na Educação Básica com respeito ao ensino dos números racionais. Os participantes foram estudantes e professores dos cursos presenciais em licenciatura em Matemática da Universidade Federal de Sergipe (UFS) e do Instituto Federal de Educação, Ciência e Tecnologia de Sergipe (IFS). Trata-se de uma pesquisa qualitativa, e os dados foram coletados por meio da aplicação de questionários, revisão bibliográfica, além de documentos dos cursos de licenciatura da UFS e do IFS. Em relação aos conhecimentos, consideramos as categorias de Ball, Thames e Phelps (2008), que, apoiados pelas ideias de Shulman (1986), indicam os conhecimentos necessários para ensinar Matemática. Quanto à argumentação, nos fundamentamos no modelo de Sales (2011) e Attie (2016), que apontam as categorias da argumentação explicativa e justificativa. A análise dos instrumentos aplicados se deu com base na Análise de Conteúdo (AC), seguindo as orientações de Bardin (2011). Observando os nossos dados, constatamos que é comum que os licenciandos façam o uso da Argumentação Explicativa para argumentar procedimentos relacionados aos números racionais; quando questionados sobre o porquê da validade de alguns processos, muitos não souberam apresentar uma justificativa. Com isso, foi perceptível que há dificuldades dos estudantes em utilizar a argumentação nos procedimentos matemáticos em questão para validar propriedades. Dessa forma, evidenciamos que se faz necessário haver formações que proporcionem e potencializem o processo de legitimidade dos conceitos matemáticos e que se invista no processo argumentativo dos estudantes de licenciatura em Matemática.São CristóvãoporMatemáticaEnsino de matemáticaNúmeros racionaisFormação de professoresConhecimentos no ensino de matemáticaArgumentação no ensino de matemáticaEnsino dos números racionaisFormação inicialKnowledge in math teachingArgumentation in math teachingRational numbers teachingUndergraduate formationConhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Ensino de Ciências e MatemáticaUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/18477/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALLANA_THAIS_SANTOS_SILVA.pdfLANA_THAIS_SANTOS_SILVA.pdfapplication/pdf5186990https://ri.ufs.br/jspui/bitstream/riufs/18477/2/LANA_THAIS_SANTOS_SILVA.pdf381edf55757c99c09cc07f0c33d3b7a1MD52riufs/184772023-10-06 17:42:08.744oai:ufs.br:riufs/18477TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-10-06T20:42:08Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais
title Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais
spellingShingle Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais
Silva, Lana Thaís Santos
Matemática
Ensino de matemática
Números racionais
Formação de professores
Conhecimentos no ensino de matemática
Argumentação no ensino de matemática
Ensino dos números racionais
Formação inicial
Knowledge in math teaching
Argumentation in math teaching
Rational numbers teaching
Undergraduate formation
title_short Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais
title_full Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais
title_fullStr Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais
title_full_unstemmed Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais
title_sort Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais
author Silva, Lana Thaís Santos
author_facet Silva, Lana Thaís Santos
author_role author
dc.contributor.author.fl_str_mv Silva, Lana Thaís Santos
dc.contributor.advisor1.fl_str_mv Attie, João Paulo
contributor_str_mv Attie, João Paulo
dc.subject.por.fl_str_mv Matemática
Ensino de matemática
Números racionais
Formação de professores
Conhecimentos no ensino de matemática
Argumentação no ensino de matemática
Ensino dos números racionais
Formação inicial
topic Matemática
Ensino de matemática
Números racionais
Formação de professores
Conhecimentos no ensino de matemática
Argumentação no ensino de matemática
Ensino dos números racionais
Formação inicial
Knowledge in math teaching
Argumentation in math teaching
Rational numbers teaching
Undergraduate formation
dc.subject.eng.fl_str_mv Knowledge in math teaching
Argumentation in math teaching
Rational numbers teaching
Undergraduate formation
description This work aims to identify what knowledge and arguments are evidenced in the teaching of rational numbers in the process of initial teacher training, observing possible relationships between academic mathematics addressed in higher education courses and school mathematics worked in Basic Education with respect to the teaching of students rational numbers. The participants were students and professors of the classroom courses in Mathematics Degree at the Federal University of Sergipe (Universidade Federal de Sergipe – UFS) and the Federal Institute of Education, Science and Technology of Sergipe (Instituto Federal de Educação, Ciência e Tecnologia de Sergipe – IFS). This was a qualitative research, and the data were collected through the application of questionnaires, bibliographic review, documents from the undergraduate courses at UFS and IFS, interviews and records in the field diary carried out during the meetings. Regarding knowledge, we considered the categories of Ball, Thames and Phelps (2008) which, supported by Shulman's ideas (1986), indicate the knowledge necessary to teach Mathematics. As for the argumentation, we are based on the model of Sales (2011) and Attie (2016), which point out the categories of explanative and justificative argumentation. The analysis of the instruments applied was based on Content Analysis (CA), following the guidelines of Bardin (2011). Observing our data, we found that it is common for undergraduate students to use Explanatory Argumentation to argue procedures related to rational numbers. When asked why some processes are valid, many were unable to provide a justification. Therefore, it was noticeable that there are difficulties for students in using argumentation in the mathematical procedures in question, to validate properties. In this way, we demonstrate that there is a need for training that provides and enhances the process of legitimacy of mathematical concepts and that invests in the argumentative process of undergraduate Mathematics students.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-10-06T20:42:03Z
dc.date.available.fl_str_mv 2023-10-06T20:42:03Z
dc.date.issued.fl_str_mv 2023-03-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Lana Thaís Santos. Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais. 2023. 105 f. Dissertação (Mestrado em Ensino de Ciências e Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2023.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/18477
identifier_str_mv SILVA, Lana Thaís Santos. Conhecimentos evidenciados nos cursos de formação inicial para o ensino dos números racionais. 2023. 105 f. Dissertação (Mestrado em Ensino de Ciências e Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2023.
url https://ri.ufs.br/jspui/handle/riufs/18477
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Ensino de Ciências e Matemática
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe (UFS)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/18477/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/18477/2/LANA_THAIS_SANTOS_SILVA.pdf
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
381edf55757c99c09cc07f0c33d3b7a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110764418334720