Dual complementar de Newton
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | http://ri.ufs.br/jspui/handle/riufs/11087 |
Resumo: | In this work we will study Newton complementary dual, a theory originated in the work of A. Simis and B. Costa, later simplified and improved in the work of A. Doria. In a first moment, we will give preliminary notions of Algebraic Geometry, Rational Applications and Rees Algebra, however, under the algebraic view. In the sequence we will discuss the main theme of the dissertation: the duality of Newton and its properties, which were developed having implicit a very important hypothesis, the canonical restrictions. Finally, we will establish some relations between the ideal of presentation of a rational application and its dual via a function, which is not a ring homomorphism, but we will also see that the dual applications of Jonquières are still applications of this type. |
id |
UFS-2_4fd75780da5faff97aee73559637ad28 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/11087 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Santos, Rodrigo Santana dosDória, André Vinicius Santos2019-05-03T16:40:25Z2019-05-03T16:40:25Z2019-02-27SANTOS, Rodrigo Santana dos. Dual complementar de Newton. 2019. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.http://ri.ufs.br/jspui/handle/riufs/11087In this work we will study Newton complementary dual, a theory originated in the work of A. Simis and B. Costa, later simplified and improved in the work of A. Doria. In a first moment, we will give preliminary notions of Algebraic Geometry, Rational Applications and Rees Algebra, however, under the algebraic view. In the sequence we will discuss the main theme of the dissertation: the duality of Newton and its properties, which were developed having implicit a very important hypothesis, the canonical restrictions. Finally, we will establish some relations between the ideal of presentation of a rational application and its dual via a function, which is not a ring homomorphism, but we will also see that the dual applications of Jonquières are still applications of this type.Neste trabalho estudaremos o Dual complementar de Newton, uma teoria originada no trabalho de A. Simis e B. Costa, posteriormente simplificada e melhorada no trabalho de A. Dória. Em um primeiro momento, daremos noções preliminares sobre Geometria Algébrica, Aplicações racionais e Álgebra de Rees, no entanto, sob o ponto de vista algébrico. Na sequência discutiremos o tema principal da dissertação, no qual falaremos da dualidade de Newton e suas propriedades, as quais foram desenvolvidas tendo implícita uma hipótese muito importante, as restrições canônicas. Por fim, estabeleceremos algumas relações entre os ideais de apresentação de uma aplicação racional e seu dual via uma função, que não é um homomorfismo de anéis, como também veremos que o dual de aplicações de Jonquières ainda são aplicações desse tipo.Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SESão Cristóvão, SEporMatemáticaÁlgebraGeometria algébricaAplicações racionaisÁlgebra de ReesDualidade de NewtonAplicações de JonquièresRational applicationsAlgebra of ReesNewton's dualityJonquières applicationsCIENCIAS EXATAS E DA TERRA::MATEMATICADual complementar de Newtoninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em MatemáticaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessTEXTRODRIGO_SANTANA_SANTOS.pdf.txtRODRIGO_SANTANA_SANTOS.pdf.txtExtracted texttext/plain114071https://ri.ufs.br/jspui/bitstream/riufs/11087/3/RODRIGO_SANTANA_SANTOS.pdf.txt8fada257c02ed7b9755d1e60dfbef059MD53THUMBNAILRODRIGO_SANTANA_SANTOS.pdf.jpgRODRIGO_SANTANA_SANTOS.pdf.jpgGenerated Thumbnailimage/jpeg1224https://ri.ufs.br/jspui/bitstream/riufs/11087/4/RODRIGO_SANTANA_SANTOS.pdf.jpg1c3e385f041c3b2a7646e37d55f5b1f2MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/11087/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALRODRIGO_SANTANA_SANTOS.pdfRODRIGO_SANTANA_SANTOS.pdfapplication/pdf887303https://ri.ufs.br/jspui/bitstream/riufs/11087/2/RODRIGO_SANTANA_SANTOS.pdf3566d6559a3731ae35642fd58acfee18MD52riufs/110872019-05-03 13:40:26.292oai:ufs.br:riufs/11087TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2019-05-03T16:40:26Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Dual complementar de Newton |
title |
Dual complementar de Newton |
spellingShingle |
Dual complementar de Newton Santos, Rodrigo Santana dos Matemática Álgebra Geometria algébrica Aplicações racionais Álgebra de Rees Dualidade de Newton Aplicações de Jonquières Rational applications Algebra of Rees Newton's duality Jonquières applications CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Dual complementar de Newton |
title_full |
Dual complementar de Newton |
title_fullStr |
Dual complementar de Newton |
title_full_unstemmed |
Dual complementar de Newton |
title_sort |
Dual complementar de Newton |
author |
Santos, Rodrigo Santana dos |
author_facet |
Santos, Rodrigo Santana dos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Santos, Rodrigo Santana dos |
dc.contributor.advisor1.fl_str_mv |
Dória, André Vinicius Santos |
contributor_str_mv |
Dória, André Vinicius Santos |
dc.subject.por.fl_str_mv |
Matemática Álgebra Geometria algébrica Aplicações racionais Álgebra de Rees Dualidade de Newton Aplicações de Jonquières |
topic |
Matemática Álgebra Geometria algébrica Aplicações racionais Álgebra de Rees Dualidade de Newton Aplicações de Jonquières Rational applications Algebra of Rees Newton's duality Jonquières applications CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Rational applications Algebra of Rees Newton's duality Jonquières applications |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work we will study Newton complementary dual, a theory originated in the work of A. Simis and B. Costa, later simplified and improved in the work of A. Doria. In a first moment, we will give preliminary notions of Algebraic Geometry, Rational Applications and Rees Algebra, however, under the algebraic view. In the sequence we will discuss the main theme of the dissertation: the duality of Newton and its properties, which were developed having implicit a very important hypothesis, the canonical restrictions. Finally, we will establish some relations between the ideal of presentation of a rational application and its dual via a function, which is not a ring homomorphism, but we will also see that the dual applications of Jonquières are still applications of this type. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-05-03T16:40:25Z |
dc.date.available.fl_str_mv |
2019-05-03T16:40:25Z |
dc.date.issued.fl_str_mv |
2019-02-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, Rodrigo Santana dos. Dual complementar de Newton. 2019. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019. |
dc.identifier.uri.fl_str_mv |
http://ri.ufs.br/jspui/handle/riufs/11087 |
identifier_str_mv |
SANTOS, Rodrigo Santana dos. Dual complementar de Newton. 2019. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019. |
url |
http://ri.ufs.br/jspui/handle/riufs/11087 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Matemática |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/11087/3/RODRIGO_SANTANA_SANTOS.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/11087/4/RODRIGO_SANTANA_SANTOS.pdf.jpg https://ri.ufs.br/jspui/bitstream/riufs/11087/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/11087/2/RODRIGO_SANTANA_SANTOS.pdf |
bitstream.checksum.fl_str_mv |
8fada257c02ed7b9755d1e60dfbef059 1c3e385f041c3b2a7646e37d55f5b1f2 098cbbf65c2c15e1fb2e49c5d306a44c 3566d6559a3731ae35642fd58acfee18 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110771871612928 |