Dual complementar de Newton

Detalhes bibliográficos
Autor(a) principal: Santos, Rodrigo Santana dos
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/11087
Resumo: In this work we will study Newton complementary dual, a theory originated in the work of A. Simis and B. Costa, later simplified and improved in the work of A. Doria. In a first moment, we will give preliminary notions of Algebraic Geometry, Rational Applications and Rees Algebra, however, under the algebraic view. In the sequence we will discuss the main theme of the dissertation: the duality of Newton and its properties, which were developed having implicit a very important hypothesis, the canonical restrictions. Finally, we will establish some relations between the ideal of presentation of a rational application and its dual via a function, which is not a ring homomorphism, but we will also see that the dual applications of Jonquières are still applications of this type.
id UFS-2_4fd75780da5faff97aee73559637ad28
oai_identifier_str oai:ufs.br:riufs/11087
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Santos, Rodrigo Santana dosDória, André Vinicius Santos2019-05-03T16:40:25Z2019-05-03T16:40:25Z2019-02-27SANTOS, Rodrigo Santana dos. Dual complementar de Newton. 2019. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.http://ri.ufs.br/jspui/handle/riufs/11087In this work we will study Newton complementary dual, a theory originated in the work of A. Simis and B. Costa, later simplified and improved in the work of A. Doria. In a first moment, we will give preliminary notions of Algebraic Geometry, Rational Applications and Rees Algebra, however, under the algebraic view. In the sequence we will discuss the main theme of the dissertation: the duality of Newton and its properties, which were developed having implicit a very important hypothesis, the canonical restrictions. Finally, we will establish some relations between the ideal of presentation of a rational application and its dual via a function, which is not a ring homomorphism, but we will also see that the dual applications of Jonquières are still applications of this type.Neste trabalho estudaremos o Dual complementar de Newton, uma teoria originada no trabalho de A. Simis e B. Costa, posteriormente simplificada e melhorada no trabalho de A. Dória. Em um primeiro momento, daremos noções preliminares sobre Geometria Algébrica, Aplicações racionais e Álgebra de Rees, no entanto, sob o ponto de vista algébrico. Na sequência discutiremos o tema principal da dissertação, no qual falaremos da dualidade de Newton e suas propriedades, as quais foram desenvolvidas tendo implícita uma hipótese muito importante, as restrições canônicas. Por fim, estabeleceremos algumas relações entre os ideais de apresentação de uma aplicação racional e seu dual via uma função, que não é um homomorfismo de anéis, como também veremos que o dual de aplicações de Jonquières ainda são aplicações desse tipo.Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SESão Cristóvão, SEporMatemáticaÁlgebraGeometria algébricaAplicações racionaisÁlgebra de ReesDualidade de NewtonAplicações de JonquièresRational applicationsAlgebra of ReesNewton's dualityJonquières applicationsCIENCIAS EXATAS E DA TERRA::MATEMATICADual complementar de Newtoninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em MatemáticaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessTEXTRODRIGO_SANTANA_SANTOS.pdf.txtRODRIGO_SANTANA_SANTOS.pdf.txtExtracted texttext/plain114071https://ri.ufs.br/jspui/bitstream/riufs/11087/3/RODRIGO_SANTANA_SANTOS.pdf.txt8fada257c02ed7b9755d1e60dfbef059MD53THUMBNAILRODRIGO_SANTANA_SANTOS.pdf.jpgRODRIGO_SANTANA_SANTOS.pdf.jpgGenerated Thumbnailimage/jpeg1224https://ri.ufs.br/jspui/bitstream/riufs/11087/4/RODRIGO_SANTANA_SANTOS.pdf.jpg1c3e385f041c3b2a7646e37d55f5b1f2MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/11087/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALRODRIGO_SANTANA_SANTOS.pdfRODRIGO_SANTANA_SANTOS.pdfapplication/pdf887303https://ri.ufs.br/jspui/bitstream/riufs/11087/2/RODRIGO_SANTANA_SANTOS.pdf3566d6559a3731ae35642fd58acfee18MD52riufs/110872019-05-03 13:40:26.292oai:ufs.br:riufs/11087TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2019-05-03T16:40:26Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Dual complementar de Newton
title Dual complementar de Newton
spellingShingle Dual complementar de Newton
Santos, Rodrigo Santana dos
Matemática
Álgebra
Geometria algébrica
Aplicações racionais
Álgebra de Rees
Dualidade de Newton
Aplicações de Jonquières
Rational applications
Algebra of Rees
Newton's duality
Jonquières applications
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Dual complementar de Newton
title_full Dual complementar de Newton
title_fullStr Dual complementar de Newton
title_full_unstemmed Dual complementar de Newton
title_sort Dual complementar de Newton
author Santos, Rodrigo Santana dos
author_facet Santos, Rodrigo Santana dos
author_role author
dc.contributor.author.fl_str_mv Santos, Rodrigo Santana dos
dc.contributor.advisor1.fl_str_mv Dória, André Vinicius Santos
contributor_str_mv Dória, André Vinicius Santos
dc.subject.por.fl_str_mv Matemática
Álgebra
Geometria algébrica
Aplicações racionais
Álgebra de Rees
Dualidade de Newton
Aplicações de Jonquières
topic Matemática
Álgebra
Geometria algébrica
Aplicações racionais
Álgebra de Rees
Dualidade de Newton
Aplicações de Jonquières
Rational applications
Algebra of Rees
Newton's duality
Jonquières applications
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Rational applications
Algebra of Rees
Newton's duality
Jonquières applications
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this work we will study Newton complementary dual, a theory originated in the work of A. Simis and B. Costa, later simplified and improved in the work of A. Doria. In a first moment, we will give preliminary notions of Algebraic Geometry, Rational Applications and Rees Algebra, however, under the algebraic view. In the sequence we will discuss the main theme of the dissertation: the duality of Newton and its properties, which were developed having implicit a very important hypothesis, the canonical restrictions. Finally, we will establish some relations between the ideal of presentation of a rational application and its dual via a function, which is not a ring homomorphism, but we will also see that the dual applications of Jonquières are still applications of this type.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-05-03T16:40:25Z
dc.date.available.fl_str_mv 2019-05-03T16:40:25Z
dc.date.issued.fl_str_mv 2019-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Rodrigo Santana dos. Dual complementar de Newton. 2019. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/11087
identifier_str_mv SANTOS, Rodrigo Santana dos. Dual complementar de Newton. 2019. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.
url http://ri.ufs.br/jspui/handle/riufs/11087
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Matemática
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/11087/3/RODRIGO_SANTANA_SANTOS.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/11087/4/RODRIGO_SANTANA_SANTOS.pdf.jpg
https://ri.ufs.br/jspui/bitstream/riufs/11087/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/11087/2/RODRIGO_SANTANA_SANTOS.pdf
bitstream.checksum.fl_str_mv 8fada257c02ed7b9755d1e60dfbef059
1c3e385f041c3b2a7646e37d55f5b1f2
098cbbf65c2c15e1fb2e49c5d306a44c
3566d6559a3731ae35642fd58acfee18
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110771871612928