Uma jornada aos anéis de Gorenstein
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | http://ri.ufs.br/jspui/handle/riufs/16246 |
Resumo: | This work has as main goal to make a detailed study of Gorenstein rings and your role in local duality theory. At the beginning, some pre-requisites are studied like the Krull dimension of modules, Koszul Complexes and Cohen-Macaulay rings. Concerning to this last topic, we studied in more detail the regular rings and the complete intersection rings. We showed that all this rings are Gorenstein. Also, we present the characterization of Gorenstein rings in terms of the concept of type of a ring. Ultimately, we present the concept of canonical module, highlighting your role in Local Duality Theory over maximal Cohen-Macaulay modules. |
id |
UFS-2_9333932d10446f0b2a06cecc9e147351 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/16246 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Dosea, André SantanaRamos, Zaqueu Alves2022-09-02T17:01:37Z2022-09-02T17:01:37Z2019-02-28DOSEA, André Santana. Uma jornada aos anéis de Gorenstein. 2019. 179 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2019.http://ri.ufs.br/jspui/handle/riufs/16246This work has as main goal to make a detailed study of Gorenstein rings and your role in local duality theory. At the beginning, some pre-requisites are studied like the Krull dimension of modules, Koszul Complexes and Cohen-Macaulay rings. Concerning to this last topic, we studied in more detail the regular rings and the complete intersection rings. We showed that all this rings are Gorenstein. Also, we present the characterization of Gorenstein rings in terms of the concept of type of a ring. Ultimately, we present the concept of canonical module, highlighting your role in Local Duality Theory over maximal Cohen-Macaulay modules.Esta dissertação tem como objetivo principal fazer um estudo detalhado dos anéis de Gorenstein e seu papel na teoria de dualidade local. Iniciamos estudando alguns pré-requisitos como dimensão de krull de módulos, complexos de Koszul e anéis Cohen-Macaulay. Neste último tópico, estudamos com mais detalhes os anéis regulares e de interseção completa. Mostramos que todos estes anéis são Gorenstein. Caracterizamos os anéis de Gorenstein a partir do conceito de tipo de anel. Por fim, estudamos o modulo canônico, destacando seu papel na teoria de dualidade local sobre anéis Cohen-Macaulay máximos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão CristóvãoporMatemáticaÁlgebraHomologiaAnéis de GorensteinMódulo canônicoGorenstein ringsHomologyCanonical moduleCIENCIAS EXATAS E DA TERRA::MATEMATICAUma jornada aos anéis de Gorensteininfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em MatemáticaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessORIGINALANDRE_SANTANA_DOSEA.pdfANDRE_SANTANA_DOSEA.pdfapplication/pdf1251018https://ri.ufs.br/jspui/bitstream/riufs/16246/2/ANDRE_SANTANA_DOSEA.pdfc45b5268ef44e93da82a5a6092c124ebMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/16246/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51TEXTANDRE_SANTANA_DOSEA.pdf.txtANDRE_SANTANA_DOSEA.pdf.txtExtracted texttext/plain295959https://ri.ufs.br/jspui/bitstream/riufs/16246/3/ANDRE_SANTANA_DOSEA.pdf.txt6201ec7283fa825b1270d158598ab1dbMD53THUMBNAILANDRE_SANTANA_DOSEA.pdf.jpgANDRE_SANTANA_DOSEA.pdf.jpgGenerated Thumbnailimage/jpeg1425https://ri.ufs.br/jspui/bitstream/riufs/16246/4/ANDRE_SANTANA_DOSEA.pdf.jpg3545c100fe066376d8d54a06dadfb734MD54riufs/162462022-09-02 14:01:38.074oai:ufs.br:riufs/16246TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2022-09-02T17:01:38Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Uma jornada aos anéis de Gorenstein |
title |
Uma jornada aos anéis de Gorenstein |
spellingShingle |
Uma jornada aos anéis de Gorenstein Dosea, André Santana Matemática Álgebra Homologia Anéis de Gorenstein Módulo canônico Gorenstein rings Homology Canonical module CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Uma jornada aos anéis de Gorenstein |
title_full |
Uma jornada aos anéis de Gorenstein |
title_fullStr |
Uma jornada aos anéis de Gorenstein |
title_full_unstemmed |
Uma jornada aos anéis de Gorenstein |
title_sort |
Uma jornada aos anéis de Gorenstein |
author |
Dosea, André Santana |
author_facet |
Dosea, André Santana |
author_role |
author |
dc.contributor.author.fl_str_mv |
Dosea, André Santana |
dc.contributor.advisor1.fl_str_mv |
Ramos, Zaqueu Alves |
contributor_str_mv |
Ramos, Zaqueu Alves |
dc.subject.por.fl_str_mv |
Matemática Álgebra Homologia Anéis de Gorenstein Módulo canônico |
topic |
Matemática Álgebra Homologia Anéis de Gorenstein Módulo canônico Gorenstein rings Homology Canonical module CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Gorenstein rings Homology Canonical module |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
This work has as main goal to make a detailed study of Gorenstein rings and your role in local duality theory. At the beginning, some pre-requisites are studied like the Krull dimension of modules, Koszul Complexes and Cohen-Macaulay rings. Concerning to this last topic, we studied in more detail the regular rings and the complete intersection rings. We showed that all this rings are Gorenstein. Also, we present the characterization of Gorenstein rings in terms of the concept of type of a ring. Ultimately, we present the concept of canonical module, highlighting your role in Local Duality Theory over maximal Cohen-Macaulay modules. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-02-28 |
dc.date.accessioned.fl_str_mv |
2022-09-02T17:01:37Z |
dc.date.available.fl_str_mv |
2022-09-02T17:01:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
DOSEA, André Santana. Uma jornada aos anéis de Gorenstein. 2019. 179 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2019. |
dc.identifier.uri.fl_str_mv |
http://ri.ufs.br/jspui/handle/riufs/16246 |
identifier_str_mv |
DOSEA, André Santana. Uma jornada aos anéis de Gorenstein. 2019. 179 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2019. |
url |
http://ri.ufs.br/jspui/handle/riufs/16246 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Matemática |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/16246/2/ANDRE_SANTANA_DOSEA.pdf https://ri.ufs.br/jspui/bitstream/riufs/16246/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/16246/3/ANDRE_SANTANA_DOSEA.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/16246/4/ANDRE_SANTANA_DOSEA.pdf.jpg |
bitstream.checksum.fl_str_mv |
c45b5268ef44e93da82a5a6092c124eb 098cbbf65c2c15e1fb2e49c5d306a44c 6201ec7283fa825b1270d158598ab1db 3545c100fe066376d8d54a06dadfb734 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110654307368960 |