Solução de equações polinomiais por meio de radicais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | http://ri.ufs.br/jspui/handle/riufs/12412 |
Resumo: | For many years, mathematicians have dedicated to nding solutions for eventual problems. One of those that intrigued them, it was the solution of equations. As a result of these studies, today we have formulas that solve any polynomial equation of degree 4. However, when the challenges came to be about equations of degree 5. It was concluded that it was not always possible to nd solutions expressed by radicals. Many mathematicians have dedicated to solve this problem. Josefh Louis Lagrange in 1770 found that the gimmicks used in the equations of degrees 3 and 4 did not t for degrees 5. They suspected that it might not always be possible to determine the solutions. In 1824, the mathematician, Niels Henrik Abel was able to prove these suspicious. But it stayed the question: When would it be possible to nd solutions of radicals for equations of degree 5? And in 1843, the mathematician Evariste Galois' brilliant work came to the Paris Academy of Sciences, who developed the important theory that bears his name, as well as the Group Theory, which beautifully explains this question. We will do an introductory study of Group Theory, Field Extensions, and Galois Theory, which it will serve as tools for showing \the solution of polynomial equations through radicals". |
id |
UFS-2_ed8d408dbb5f56669c9a7bf64db2b4a8 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/12412 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Santos, Ana Nery JesusVieira, Evilson da Silva2019-11-20T22:25:18Z2019-11-20T22:25:18Z2019-08-29SANTOS, Ana Nery Jesus. Solução de equações polinomiais por meio de radicais. 2019. 95 f. Dissertação (Mestrado Profissional em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.http://ri.ufs.br/jspui/handle/riufs/12412For many years, mathematicians have dedicated to nding solutions for eventual problems. One of those that intrigued them, it was the solution of equations. As a result of these studies, today we have formulas that solve any polynomial equation of degree 4. However, when the challenges came to be about equations of degree 5. It was concluded that it was not always possible to nd solutions expressed by radicals. Many mathematicians have dedicated to solve this problem. Josefh Louis Lagrange in 1770 found that the gimmicks used in the equations of degrees 3 and 4 did not t for degrees 5. They suspected that it might not always be possible to determine the solutions. In 1824, the mathematician, Niels Henrik Abel was able to prove these suspicious. But it stayed the question: When would it be possible to nd solutions of radicals for equations of degree 5? And in 1843, the mathematician Evariste Galois' brilliant work came to the Paris Academy of Sciences, who developed the important theory that bears his name, as well as the Group Theory, which beautifully explains this question. We will do an introductory study of Group Theory, Field Extensions, and Galois Theory, which it will serve as tools for showing \the solution of polynomial equations through radicals".Por muito tempo, os matem aticos dedicaram-se a encontrar solu c~oes para eventuais problemas. Um dos que lhes intrigavam era a resolu c~ao de equa c~oes. Como fruto desses estudos, hoje temos f ormulas que solucionam qualquer equa c~ao polinomial de grau 4. No entanto, quando os desa os passaram a ser sobre equa c~oes de grau 5, chegou-se a conclus~ao que nem sempre era poss vel encontrar solu c~oes expressas por meio de radicais. Muitos matem aticos dedicaram-se a solucionar esse problema. Joseph Loius Lagrange em 1770 veri cou que os artif cios usados nas equa c~oes de graus 3 e 4 n~ao serviam para as de grau 5. Suspeitaram ent~ao que talvez n~ao fosse sempre poss vel determinar tais solu c~oes. O matem atico Niels Henrik Abel, em 1824 conseguiu comprovar essas suspeitas. Mas cou a quest~ao: Quando seria poss vel encontrar solu c~oes por meio de radicais para equa c~oes de grau 5? E, em 1843, chegou at e a Academia de Ci^encias de Paris o trabalho do brilhante matem atico Evariste Galois, que desenvolveu a importante teoria que leva seu nome, al em da Teoria de Grupos, que explicam de forma bel ssima essa quest~ao. Faremos aqui um estudo introdut orio da Teoria dos Grupos, Extens~oes de Corpos e Teoria de Galois, que servir~ao de ferramentas para mostrar \a solu c~ao de equa c~oes polinomiais por meio de radicais".São Cristóvão, SEporMatemáticaPolinômiosTeoria dos gruposTeoria de GaloisAnéis (Álgebra)EquaçõesSolubilidade por radicaisExtensionsPolynomialsSolubility by radicalsCIENCIAS EXATAS E DA TERRA::MATEMATICASolução de equações polinomiais por meio de radicaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMestrado Profissional em MatemáticaUFSreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessTEXTANA_NERY_JESUS_SANTOS.pdf.txtANA_NERY_JESUS_SANTOS.pdf.txtExtracted texttext/plain163062https://ri.ufs.br/jspui/bitstream/riufs/12412/3/ANA_NERY_JESUS_SANTOS.pdf.txt34fa4b4ce43a7bf3610929594fa88126MD53THUMBNAILANA_NERY_JESUS_SANTOS.pdf.jpgANA_NERY_JESUS_SANTOS.pdf.jpgGenerated Thumbnailimage/jpeg1242https://ri.ufs.br/jspui/bitstream/riufs/12412/4/ANA_NERY_JESUS_SANTOS.pdf.jpg87fbe13ba6713fc22b1f82a040d5a8e4MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/12412/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALANA_NERY_JESUS_SANTOS.pdfANA_NERY_JESUS_SANTOS.pdfapplication/pdf2334179https://ri.ufs.br/jspui/bitstream/riufs/12412/2/ANA_NERY_JESUS_SANTOS.pdffe73ca6c54657f2b1c2ea852e042881bMD52riufs/124122019-11-20 19:25:18.97oai:ufs.br:riufs/12412TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2019-11-20T22:25:18Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Solução de equações polinomiais por meio de radicais |
title |
Solução de equações polinomiais por meio de radicais |
spellingShingle |
Solução de equações polinomiais por meio de radicais Santos, Ana Nery Jesus Matemática Polinômios Teoria dos grupos Teoria de Galois Anéis (Álgebra) Equações Solubilidade por radicais Extensions Polynomials Solubility by radicals CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Solução de equações polinomiais por meio de radicais |
title_full |
Solução de equações polinomiais por meio de radicais |
title_fullStr |
Solução de equações polinomiais por meio de radicais |
title_full_unstemmed |
Solução de equações polinomiais por meio de radicais |
title_sort |
Solução de equações polinomiais por meio de radicais |
author |
Santos, Ana Nery Jesus |
author_facet |
Santos, Ana Nery Jesus |
author_role |
author |
dc.contributor.author.fl_str_mv |
Santos, Ana Nery Jesus |
dc.contributor.advisor1.fl_str_mv |
Vieira, Evilson da Silva |
contributor_str_mv |
Vieira, Evilson da Silva |
dc.subject.por.fl_str_mv |
Matemática Polinômios Teoria dos grupos Teoria de Galois Anéis (Álgebra) Equações Solubilidade por radicais Extensions Polynomials Solubility by radicals |
topic |
Matemática Polinômios Teoria dos grupos Teoria de Galois Anéis (Álgebra) Equações Solubilidade por radicais Extensions Polynomials Solubility by radicals CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
For many years, mathematicians have dedicated to nding solutions for eventual problems. One of those that intrigued them, it was the solution of equations. As a result of these studies, today we have formulas that solve any polynomial equation of degree 4. However, when the challenges came to be about equations of degree 5. It was concluded that it was not always possible to nd solutions expressed by radicals. Many mathematicians have dedicated to solve this problem. Josefh Louis Lagrange in 1770 found that the gimmicks used in the equations of degrees 3 and 4 did not t for degrees 5. They suspected that it might not always be possible to determine the solutions. In 1824, the mathematician, Niels Henrik Abel was able to prove these suspicious. But it stayed the question: When would it be possible to nd solutions of radicals for equations of degree 5? And in 1843, the mathematician Evariste Galois' brilliant work came to the Paris Academy of Sciences, who developed the important theory that bears his name, as well as the Group Theory, which beautifully explains this question. We will do an introductory study of Group Theory, Field Extensions, and Galois Theory, which it will serve as tools for showing \the solution of polynomial equations through radicals". |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-11-20T22:25:18Z |
dc.date.available.fl_str_mv |
2019-11-20T22:25:18Z |
dc.date.issued.fl_str_mv |
2019-08-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, Ana Nery Jesus. Solução de equações polinomiais por meio de radicais. 2019. 95 f. Dissertação (Mestrado Profissional em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019. |
dc.identifier.uri.fl_str_mv |
http://ri.ufs.br/jspui/handle/riufs/12412 |
identifier_str_mv |
SANTOS, Ana Nery Jesus. Solução de equações polinomiais por meio de radicais. 2019. 95 f. Dissertação (Mestrado Profissional em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019. |
url |
http://ri.ufs.br/jspui/handle/riufs/12412 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Mestrado Profissional em Matemática |
dc.publisher.initials.fl_str_mv |
UFS |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/12412/3/ANA_NERY_JESUS_SANTOS.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/12412/4/ANA_NERY_JESUS_SANTOS.pdf.jpg https://ri.ufs.br/jspui/bitstream/riufs/12412/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/12412/2/ANA_NERY_JESUS_SANTOS.pdf |
bitstream.checksum.fl_str_mv |
34fa4b4ce43a7bf3610929594fa88126 87fbe13ba6713fc22b1f82a040d5a8e4 098cbbf65c2c15e1fb2e49c5d306a44c fe73ca6c54657f2b1c2ea852e042881b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110784118980608 |