Solução de equações polinomiais por meio de radicais

Detalhes bibliográficos
Autor(a) principal: Santos, Ana Nery Jesus
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/12412
Resumo: For many years, mathematicians have dedicated to nding solutions for eventual problems. One of those that intrigued them, it was the solution of equations. As a result of these studies, today we have formulas that solve any polynomial equation of degree 4. However, when the challenges came to be about equations of degree 5. It was concluded that it was not always possible to nd solutions expressed by radicals. Many mathematicians have dedicated to solve this problem. Josefh Louis Lagrange in 1770 found that the gimmicks used in the equations of degrees 3 and 4 did not t for degrees 5. They suspected that it might not always be possible to determine the solutions. In 1824, the mathematician, Niels Henrik Abel was able to prove these suspicious. But it stayed the question: When would it be possible to nd solutions of radicals for equations of degree 5? And in 1843, the mathematician Evariste Galois' brilliant work came to the Paris Academy of Sciences, who developed the important theory that bears his name, as well as the Group Theory, which beautifully explains this question. We will do an introductory study of Group Theory, Field Extensions, and Galois Theory, which it will serve as tools for showing \the solution of polynomial equations through radicals".
id UFS-2_ed8d408dbb5f56669c9a7bf64db2b4a8
oai_identifier_str oai:ufs.br:riufs/12412
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Santos, Ana Nery JesusVieira, Evilson da Silva2019-11-20T22:25:18Z2019-11-20T22:25:18Z2019-08-29SANTOS, Ana Nery Jesus. Solução de equações polinomiais por meio de radicais. 2019. 95 f. Dissertação (Mestrado Profissional em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.http://ri.ufs.br/jspui/handle/riufs/12412For many years, mathematicians have dedicated to nding solutions for eventual problems. One of those that intrigued them, it was the solution of equations. As a result of these studies, today we have formulas that solve any polynomial equation of degree 4. However, when the challenges came to be about equations of degree 5. It was concluded that it was not always possible to nd solutions expressed by radicals. Many mathematicians have dedicated to solve this problem. Josefh Louis Lagrange in 1770 found that the gimmicks used in the equations of degrees 3 and 4 did not t for degrees 5. They suspected that it might not always be possible to determine the solutions. In 1824, the mathematician, Niels Henrik Abel was able to prove these suspicious. But it stayed the question: When would it be possible to nd solutions of radicals for equations of degree 5? And in 1843, the mathematician Evariste Galois' brilliant work came to the Paris Academy of Sciences, who developed the important theory that bears his name, as well as the Group Theory, which beautifully explains this question. We will do an introductory study of Group Theory, Field Extensions, and Galois Theory, which it will serve as tools for showing \the solution of polynomial equations through radicals".Por muito tempo, os matem aticos dedicaram-se a encontrar solu c~oes para eventuais problemas. Um dos que lhes intrigavam era a resolu c~ao de equa c~oes. Como fruto desses estudos, hoje temos f ormulas que solucionam qualquer equa c~ao polinomial de grau 4. No entanto, quando os desa os passaram a ser sobre equa c~oes de grau 5, chegou-se a conclus~ao que nem sempre era poss vel encontrar solu c~oes expressas por meio de radicais. Muitos matem aticos dedicaram-se a solucionar esse problema. Joseph Loius Lagrange em 1770 veri cou que os artif cios usados nas equa c~oes de graus 3 e 4 n~ao serviam para as de grau 5. Suspeitaram ent~ao que talvez n~ao fosse sempre poss vel determinar tais solu c~oes. O matem atico Niels Henrik Abel, em 1824 conseguiu comprovar essas suspeitas. Mas cou a quest~ao: Quando seria poss vel encontrar solu c~oes por meio de radicais para equa c~oes de grau 5? E, em 1843, chegou at e a Academia de Ci^encias de Paris o trabalho do brilhante matem atico Evariste Galois, que desenvolveu a importante teoria que leva seu nome, al em da Teoria de Grupos, que explicam de forma bel ssima essa quest~ao. Faremos aqui um estudo introdut orio da Teoria dos Grupos, Extens~oes de Corpos e Teoria de Galois, que servir~ao de ferramentas para mostrar \a solu c~ao de equa c~oes polinomiais por meio de radicais".São Cristóvão, SEporMatemáticaPolinômiosTeoria dos gruposTeoria de GaloisAnéis (Álgebra)EquaçõesSolubilidade por radicaisExtensionsPolynomialsSolubility by radicalsCIENCIAS EXATAS E DA TERRA::MATEMATICASolução de equações polinomiais por meio de radicaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMestrado Profissional em MatemáticaUFSreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessTEXTANA_NERY_JESUS_SANTOS.pdf.txtANA_NERY_JESUS_SANTOS.pdf.txtExtracted texttext/plain163062https://ri.ufs.br/jspui/bitstream/riufs/12412/3/ANA_NERY_JESUS_SANTOS.pdf.txt34fa4b4ce43a7bf3610929594fa88126MD53THUMBNAILANA_NERY_JESUS_SANTOS.pdf.jpgANA_NERY_JESUS_SANTOS.pdf.jpgGenerated Thumbnailimage/jpeg1242https://ri.ufs.br/jspui/bitstream/riufs/12412/4/ANA_NERY_JESUS_SANTOS.pdf.jpg87fbe13ba6713fc22b1f82a040d5a8e4MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/12412/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALANA_NERY_JESUS_SANTOS.pdfANA_NERY_JESUS_SANTOS.pdfapplication/pdf2334179https://ri.ufs.br/jspui/bitstream/riufs/12412/2/ANA_NERY_JESUS_SANTOS.pdffe73ca6c54657f2b1c2ea852e042881bMD52riufs/124122019-11-20 19:25:18.97oai:ufs.br:riufs/12412TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2019-11-20T22:25:18Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Solução de equações polinomiais por meio de radicais
title Solução de equações polinomiais por meio de radicais
spellingShingle Solução de equações polinomiais por meio de radicais
Santos, Ana Nery Jesus
Matemática
Polinômios
Teoria dos grupos
Teoria de Galois
Anéis (Álgebra)
Equações
Solubilidade por radicais
Extensions
Polynomials
Solubility by radicals
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Solução de equações polinomiais por meio de radicais
title_full Solução de equações polinomiais por meio de radicais
title_fullStr Solução de equações polinomiais por meio de radicais
title_full_unstemmed Solução de equações polinomiais por meio de radicais
title_sort Solução de equações polinomiais por meio de radicais
author Santos, Ana Nery Jesus
author_facet Santos, Ana Nery Jesus
author_role author
dc.contributor.author.fl_str_mv Santos, Ana Nery Jesus
dc.contributor.advisor1.fl_str_mv Vieira, Evilson da Silva
contributor_str_mv Vieira, Evilson da Silva
dc.subject.por.fl_str_mv Matemática
Polinômios
Teoria dos grupos
Teoria de Galois
Anéis (Álgebra)
Equações
Solubilidade por radicais
Extensions
Polynomials
Solubility by radicals
topic Matemática
Polinômios
Teoria dos grupos
Teoria de Galois
Anéis (Álgebra)
Equações
Solubilidade por radicais
Extensions
Polynomials
Solubility by radicals
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description For many years, mathematicians have dedicated to nding solutions for eventual problems. One of those that intrigued them, it was the solution of equations. As a result of these studies, today we have formulas that solve any polynomial equation of degree 4. However, when the challenges came to be about equations of degree 5. It was concluded that it was not always possible to nd solutions expressed by radicals. Many mathematicians have dedicated to solve this problem. Josefh Louis Lagrange in 1770 found that the gimmicks used in the equations of degrees 3 and 4 did not t for degrees 5. They suspected that it might not always be possible to determine the solutions. In 1824, the mathematician, Niels Henrik Abel was able to prove these suspicious. But it stayed the question: When would it be possible to nd solutions of radicals for equations of degree 5? And in 1843, the mathematician Evariste Galois' brilliant work came to the Paris Academy of Sciences, who developed the important theory that bears his name, as well as the Group Theory, which beautifully explains this question. We will do an introductory study of Group Theory, Field Extensions, and Galois Theory, which it will serve as tools for showing \the solution of polynomial equations through radicals".
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-11-20T22:25:18Z
dc.date.available.fl_str_mv 2019-11-20T22:25:18Z
dc.date.issued.fl_str_mv 2019-08-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Ana Nery Jesus. Solução de equações polinomiais por meio de radicais. 2019. 95 f. Dissertação (Mestrado Profissional em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/12412
identifier_str_mv SANTOS, Ana Nery Jesus. Solução de equações polinomiais por meio de radicais. 2019. 95 f. Dissertação (Mestrado Profissional em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.
url http://ri.ufs.br/jspui/handle/riufs/12412
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Mestrado Profissional em Matemática
dc.publisher.initials.fl_str_mv UFS
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/12412/3/ANA_NERY_JESUS_SANTOS.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/12412/4/ANA_NERY_JESUS_SANTOS.pdf.jpg
https://ri.ufs.br/jspui/bitstream/riufs/12412/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/12412/2/ANA_NERY_JESUS_SANTOS.pdf
bitstream.checksum.fl_str_mv 34fa4b4ce43a7bf3610929594fa88126
87fbe13ba6713fc22b1f82a040d5a8e4
098cbbf65c2c15e1fb2e49c5d306a44c
fe73ca6c54657f2b1c2ea852e042881b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110784118980608