A four-dimensional Euclidean geometry for relativistic phenomena: kinematics

Detalhes bibliográficos
Autor(a) principal: Almeida, Otávio Fossa de
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: por
Título da fonte: Caderno Brasileiro de Ensino de Física (Online)
Texto Completo: https://periodicos.ufsc.br/index.php/fisica/article/view/77562
Resumo: The general goal of this article is to open a new line of discussion in teaching of modern relativity of motion, offering a four-dimensional Euclidean geometric approach which adopts proper time as the fourth Cartesian axis. This initiative is because many observe severe barriers to attempt to do transpositions of the relativistic phenomena to basic education when necessary, mainly because Special Theory of Relativity (STR) is very abstract, and Minkowskian Spacetime Theory (STT) and General Theory of Relativity (GTR) requires a non-Euclidean geometry. In this context, this new geometry is mainly focused on the training of teachers, who are the creators of these transpositions, and has the specific goal of exploring its functionality in describing exclusively the relativistic kinematics, without defining a quantity to describe the change of movement, discussing the problems of time dilation, composition of movements, length contraction and the “paradoxes” of twins, contraction of space, and rigidly rotating disk. This specific goal is important because these six problems are not only historically relevant, but also serve as a laboratory to test the validity of this new geometry, which, although equivalent to STR and STT, has its internal cohesion.
id UFSC-19_45ed33e0fac7699f9f659dc9d65c8400
oai_identifier_str oai:periodicos.ufsc.br:article/77562
network_acronym_str UFSC-19
network_name_str Caderno Brasileiro de Ensino de Física (Online)
repository_id_str
spelling A four-dimensional Euclidean geometry for relativistic phenomena: kinematicsUma geometria tetradimensional euclidiana para os fenômenos relativistas: cinemáticaThe general goal of this article is to open a new line of discussion in teaching of modern relativity of motion, offering a four-dimensional Euclidean geometric approach which adopts proper time as the fourth Cartesian axis. This initiative is because many observe severe barriers to attempt to do transpositions of the relativistic phenomena to basic education when necessary, mainly because Special Theory of Relativity (STR) is very abstract, and Minkowskian Spacetime Theory (STT) and General Theory of Relativity (GTR) requires a non-Euclidean geometry. In this context, this new geometry is mainly focused on the training of teachers, who are the creators of these transpositions, and has the specific goal of exploring its functionality in describing exclusively the relativistic kinematics, without defining a quantity to describe the change of movement, discussing the problems of time dilation, composition of movements, length contraction and the “paradoxes” of twins, contraction of space, and rigidly rotating disk. This specific goal is important because these six problems are not only historically relevant, but also serve as a laboratory to test the validity of this new geometry, which, although equivalent to STR and STT, has its internal cohesion.O objetivo geral deste artigo é abrir uma nova linha de discussão no ensino da relatividade do movimento moderna, oferecendo uma abordagem geométrica euclidiana em quatro dimensões, que adota o tempo próprio como quarto eixo cartesiano. Essa iniciativa se deve ao fato de que são identificadas severas barreiras às tentativas, quando necessárias, de transposição dos fenômenos relativistas para a educação básica, principalmente porque a Teoria da Relatividade Especial (TRE) é muito abstrata e as Teorias do Espaço-tempo (TET) minkowskiana e da Relatividade Geral (TRG) exigem uma geometria não-euclidiana. Nesse contexto, essa nova geometria é focada, sobremaneira, na formação de professores, que são os artífices dessas transposições, e possui o objetivo específico de explorar sua funcionalidade em descrever exclusivamente a cinemática relativista, sem definir uma grandeza para descrever a mudança do movimento, discutindo os problemas da dilatação do tempo, da composição de movimentos, da contração do comprimento e dos “paradoxos” dos gêmeos, da contração do espaço e do disco rígido girante. Esse objetivo específico é importante porque estes seis problemas não só são historicamente relevantes, como também servem como laboratório para testar a validade da nova geometria, que, apesar de equivalente à TRE e à TET, possui sua coesão interna.Imprensa Universitária - UFSC2021-09-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsc.br/index.php/fisica/article/view/7756210.5007/2175-7941.2021.e77562Caderno Brasileiro de Ensino de Física; v. 38 n. 2 (2021): Caderno Brasileiro de Ensino de Física; 1166-11982175-79411677-2334reponame:Caderno Brasileiro de Ensino de Física (Online)instname:Universidade Federal de Santa Catarina (UFSC)instacron:UFSCporhttps://periodicos.ufsc.br/index.php/fisica/article/view/77562/47328Copyright (c) 2021 Caderno Brasileiro de Ensino de Físicainfo:eu-repo/semantics/openAccessAlmeida, Otávio Fossa de2021-09-20T11:54:04Zoai:periodicos.ufsc.br:article/77562Revistahttp://www.periodicos.ufsc.br/index.php/fisicaPUBhttps://periodicos.ufsc.br/index.php/fisica/oaicbefisica@gmail.com||fscccef@fsc.ufsc.br|| cbefisica@gmail.com2175-79411677-2334opendoar:2021-09-20T11:54:04Caderno Brasileiro de Ensino de Física (Online) - Universidade Federal de Santa Catarina (UFSC)false
dc.title.none.fl_str_mv A four-dimensional Euclidean geometry for relativistic phenomena: kinematics
Uma geometria tetradimensional euclidiana para os fenômenos relativistas: cinemática
title A four-dimensional Euclidean geometry for relativistic phenomena: kinematics
spellingShingle A four-dimensional Euclidean geometry for relativistic phenomena: kinematics
Almeida, Otávio Fossa de
title_short A four-dimensional Euclidean geometry for relativistic phenomena: kinematics
title_full A four-dimensional Euclidean geometry for relativistic phenomena: kinematics
title_fullStr A four-dimensional Euclidean geometry for relativistic phenomena: kinematics
title_full_unstemmed A four-dimensional Euclidean geometry for relativistic phenomena: kinematics
title_sort A four-dimensional Euclidean geometry for relativistic phenomena: kinematics
author Almeida, Otávio Fossa de
author_facet Almeida, Otávio Fossa de
author_role author
dc.contributor.author.fl_str_mv Almeida, Otávio Fossa de
description The general goal of this article is to open a new line of discussion in teaching of modern relativity of motion, offering a four-dimensional Euclidean geometric approach which adopts proper time as the fourth Cartesian axis. This initiative is because many observe severe barriers to attempt to do transpositions of the relativistic phenomena to basic education when necessary, mainly because Special Theory of Relativity (STR) is very abstract, and Minkowskian Spacetime Theory (STT) and General Theory of Relativity (GTR) requires a non-Euclidean geometry. In this context, this new geometry is mainly focused on the training of teachers, who are the creators of these transpositions, and has the specific goal of exploring its functionality in describing exclusively the relativistic kinematics, without defining a quantity to describe the change of movement, discussing the problems of time dilation, composition of movements, length contraction and the “paradoxes” of twins, contraction of space, and rigidly rotating disk. This specific goal is important because these six problems are not only historically relevant, but also serve as a laboratory to test the validity of this new geometry, which, although equivalent to STR and STT, has its internal cohesion.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-20
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsc.br/index.php/fisica/article/view/77562
10.5007/2175-7941.2021.e77562
url https://periodicos.ufsc.br/index.php/fisica/article/view/77562
identifier_str_mv 10.5007/2175-7941.2021.e77562
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsc.br/index.php/fisica/article/view/77562/47328
dc.rights.driver.fl_str_mv Copyright (c) 2021 Caderno Brasileiro de Ensino de Física
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Caderno Brasileiro de Ensino de Física
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Imprensa Universitária - UFSC
publisher.none.fl_str_mv Imprensa Universitária - UFSC
dc.source.none.fl_str_mv Caderno Brasileiro de Ensino de Física; v. 38 n. 2 (2021): Caderno Brasileiro de Ensino de Física; 1166-1198
2175-7941
1677-2334
reponame:Caderno Brasileiro de Ensino de Física (Online)
instname:Universidade Federal de Santa Catarina (UFSC)
instacron:UFSC
instname_str Universidade Federal de Santa Catarina (UFSC)
instacron_str UFSC
institution UFSC
reponame_str Caderno Brasileiro de Ensino de Física (Online)
collection Caderno Brasileiro de Ensino de Física (Online)
repository.name.fl_str_mv Caderno Brasileiro de Ensino de Física (Online) - Universidade Federal de Santa Catarina (UFSC)
repository.mail.fl_str_mv cbefisica@gmail.com||fscccef@fsc.ufsc.br|| cbefisica@gmail.com
_version_ 1799940575161483264