A four-dimensional Euclidean geometry for relativistic phenomena: kinematics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Caderno Brasileiro de Ensino de Física (Online) |
Texto Completo: | https://periodicos.ufsc.br/index.php/fisica/article/view/77562 |
Resumo: | The general goal of this article is to open a new line of discussion in teaching of modern relativity of motion, offering a four-dimensional Euclidean geometric approach which adopts proper time as the fourth Cartesian axis. This initiative is because many observe severe barriers to attempt to do transpositions of the relativistic phenomena to basic education when necessary, mainly because Special Theory of Relativity (STR) is very abstract, and Minkowskian Spacetime Theory (STT) and General Theory of Relativity (GTR) requires a non-Euclidean geometry. In this context, this new geometry is mainly focused on the training of teachers, who are the creators of these transpositions, and has the specific goal of exploring its functionality in describing exclusively the relativistic kinematics, without defining a quantity to describe the change of movement, discussing the problems of time dilation, composition of movements, length contraction and the “paradoxes” of twins, contraction of space, and rigidly rotating disk. This specific goal is important because these six problems are not only historically relevant, but also serve as a laboratory to test the validity of this new geometry, which, although equivalent to STR and STT, has its internal cohesion. |
id |
UFSC-19_45ed33e0fac7699f9f659dc9d65c8400 |
---|---|
oai_identifier_str |
oai:periodicos.ufsc.br:article/77562 |
network_acronym_str |
UFSC-19 |
network_name_str |
Caderno Brasileiro de Ensino de Física (Online) |
repository_id_str |
|
spelling |
A four-dimensional Euclidean geometry for relativistic phenomena: kinematicsUma geometria tetradimensional euclidiana para os fenômenos relativistas: cinemáticaThe general goal of this article is to open a new line of discussion in teaching of modern relativity of motion, offering a four-dimensional Euclidean geometric approach which adopts proper time as the fourth Cartesian axis. This initiative is because many observe severe barriers to attempt to do transpositions of the relativistic phenomena to basic education when necessary, mainly because Special Theory of Relativity (STR) is very abstract, and Minkowskian Spacetime Theory (STT) and General Theory of Relativity (GTR) requires a non-Euclidean geometry. In this context, this new geometry is mainly focused on the training of teachers, who are the creators of these transpositions, and has the specific goal of exploring its functionality in describing exclusively the relativistic kinematics, without defining a quantity to describe the change of movement, discussing the problems of time dilation, composition of movements, length contraction and the “paradoxes” of twins, contraction of space, and rigidly rotating disk. This specific goal is important because these six problems are not only historically relevant, but also serve as a laboratory to test the validity of this new geometry, which, although equivalent to STR and STT, has its internal cohesion.O objetivo geral deste artigo é abrir uma nova linha de discussão no ensino da relatividade do movimento moderna, oferecendo uma abordagem geométrica euclidiana em quatro dimensões, que adota o tempo próprio como quarto eixo cartesiano. Essa iniciativa se deve ao fato de que são identificadas severas barreiras às tentativas, quando necessárias, de transposição dos fenômenos relativistas para a educação básica, principalmente porque a Teoria da Relatividade Especial (TRE) é muito abstrata e as Teorias do Espaço-tempo (TET) minkowskiana e da Relatividade Geral (TRG) exigem uma geometria não-euclidiana. Nesse contexto, essa nova geometria é focada, sobremaneira, na formação de professores, que são os artífices dessas transposições, e possui o objetivo específico de explorar sua funcionalidade em descrever exclusivamente a cinemática relativista, sem definir uma grandeza para descrever a mudança do movimento, discutindo os problemas da dilatação do tempo, da composição de movimentos, da contração do comprimento e dos “paradoxos” dos gêmeos, da contração do espaço e do disco rígido girante. Esse objetivo específico é importante porque estes seis problemas não só são historicamente relevantes, como também servem como laboratório para testar a validade da nova geometria, que, apesar de equivalente à TRE e à TET, possui sua coesão interna.Imprensa Universitária - UFSC2021-09-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsc.br/index.php/fisica/article/view/7756210.5007/2175-7941.2021.e77562Caderno Brasileiro de Ensino de Física; v. 38 n. 2 (2021): Caderno Brasileiro de Ensino de Física; 1166-11982175-79411677-2334reponame:Caderno Brasileiro de Ensino de Física (Online)instname:Universidade Federal de Santa Catarina (UFSC)instacron:UFSCporhttps://periodicos.ufsc.br/index.php/fisica/article/view/77562/47328Copyright (c) 2021 Caderno Brasileiro de Ensino de Físicainfo:eu-repo/semantics/openAccessAlmeida, Otávio Fossa de2021-09-20T11:54:04Zoai:periodicos.ufsc.br:article/77562Revistahttp://www.periodicos.ufsc.br/index.php/fisicaPUBhttps://periodicos.ufsc.br/index.php/fisica/oaicbefisica@gmail.com||fscccef@fsc.ufsc.br|| cbefisica@gmail.com2175-79411677-2334opendoar:2021-09-20T11:54:04Caderno Brasileiro de Ensino de Física (Online) - Universidade Federal de Santa Catarina (UFSC)false |
dc.title.none.fl_str_mv |
A four-dimensional Euclidean geometry for relativistic phenomena: kinematics Uma geometria tetradimensional euclidiana para os fenômenos relativistas: cinemática |
title |
A four-dimensional Euclidean geometry for relativistic phenomena: kinematics |
spellingShingle |
A four-dimensional Euclidean geometry for relativistic phenomena: kinematics Almeida, Otávio Fossa de |
title_short |
A four-dimensional Euclidean geometry for relativistic phenomena: kinematics |
title_full |
A four-dimensional Euclidean geometry for relativistic phenomena: kinematics |
title_fullStr |
A four-dimensional Euclidean geometry for relativistic phenomena: kinematics |
title_full_unstemmed |
A four-dimensional Euclidean geometry for relativistic phenomena: kinematics |
title_sort |
A four-dimensional Euclidean geometry for relativistic phenomena: kinematics |
author |
Almeida, Otávio Fossa de |
author_facet |
Almeida, Otávio Fossa de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Otávio Fossa de |
description |
The general goal of this article is to open a new line of discussion in teaching of modern relativity of motion, offering a four-dimensional Euclidean geometric approach which adopts proper time as the fourth Cartesian axis. This initiative is because many observe severe barriers to attempt to do transpositions of the relativistic phenomena to basic education when necessary, mainly because Special Theory of Relativity (STR) is very abstract, and Minkowskian Spacetime Theory (STT) and General Theory of Relativity (GTR) requires a non-Euclidean geometry. In this context, this new geometry is mainly focused on the training of teachers, who are the creators of these transpositions, and has the specific goal of exploring its functionality in describing exclusively the relativistic kinematics, without defining a quantity to describe the change of movement, discussing the problems of time dilation, composition of movements, length contraction and the “paradoxes” of twins, contraction of space, and rigidly rotating disk. This specific goal is important because these six problems are not only historically relevant, but also serve as a laboratory to test the validity of this new geometry, which, although equivalent to STR and STT, has its internal cohesion. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufsc.br/index.php/fisica/article/view/77562 10.5007/2175-7941.2021.e77562 |
url |
https://periodicos.ufsc.br/index.php/fisica/article/view/77562 |
identifier_str_mv |
10.5007/2175-7941.2021.e77562 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufsc.br/index.php/fisica/article/view/77562/47328 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Caderno Brasileiro de Ensino de Física info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Caderno Brasileiro de Ensino de Física |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Imprensa Universitária - UFSC |
publisher.none.fl_str_mv |
Imprensa Universitária - UFSC |
dc.source.none.fl_str_mv |
Caderno Brasileiro de Ensino de Física; v. 38 n. 2 (2021): Caderno Brasileiro de Ensino de Física; 1166-1198 2175-7941 1677-2334 reponame:Caderno Brasileiro de Ensino de Física (Online) instname:Universidade Federal de Santa Catarina (UFSC) instacron:UFSC |
instname_str |
Universidade Federal de Santa Catarina (UFSC) |
instacron_str |
UFSC |
institution |
UFSC |
reponame_str |
Caderno Brasileiro de Ensino de Física (Online) |
collection |
Caderno Brasileiro de Ensino de Física (Online) |
repository.name.fl_str_mv |
Caderno Brasileiro de Ensino de Física (Online) - Universidade Federal de Santa Catarina (UFSC) |
repository.mail.fl_str_mv |
cbefisica@gmail.com||fscccef@fsc.ufsc.br|| cbefisica@gmail.com |
_version_ |
1799940575161483264 |