One can learn mathematics by investigating particular cases?

Detalhes bibliográficos
Autor(a) principal: Levy, Lênio Fernandes
Data de Publicação: 2016
Tipo de documento: Artigo
Idioma: por
Título da fonte: Alexandria (Florianópolis)
Texto Completo: https://periodicos.ufsc.br/index.php/alexandria/article/view/1982-5153.2016v9n2p287
Resumo: The discussion about the possibility of construction of mathematical objects in schools – constructions that have to do with subsidies provided by mathematical modeling activities – is the core of this article, which is marked (methodologically) by qualitative perquisition of theoretical and bibliographic nature. The deduction, although not exclusive of mathematical thinking, is its most significant atribute, differentiating this thinking of the cognitive actions that are initiated by the approach of particular cases. The particular cases usually are characteristic of the world that is understood as real. This gives rise to favorable reviews – in teaching and learning – to the idea of failure of the mathematical modeling when she (the mathematical modeling) aims at elaboration of mathematical objects, because the activity of modeling (aside from the bond that she keeps with the deduction) can not succeed without the so-called real situations. These (real) situations require (and are demanded by) cognitive processes that are opposing when walking deductive because they (the situations) contain singularities, though the deduction is necessary for the cognitive subject when he not only connect with the mathematical field, but also with several situations that are called real. The directive question of this article is the same as his title: “on can learn Mathematics by investigating particular cases?”. This article – by emphasizing the ties involving the matters “disorder, order, induction and deduction” – presents arguments that lead to results or conclusions in favor of the effectiveness of “learning (and/or construction) of Mathematics with the help of the act of modeling”, without disrespect, in turn, the use of mathematical modeling in order also to improve math skills previously internalized and assimilated by the student.
id UFSC-23_19abe36ec0193ad6673d6cfd165d1cc2
oai_identifier_str oai:periodicos.ufsc.br:article/42453
network_acronym_str UFSC-23
network_name_str Alexandria (Florianópolis)
repository_id_str
spelling One can learn mathematics by investigating particular cases?Pode-se aprender matemática através da investigação de casos particulares?The discussion about the possibility of construction of mathematical objects in schools – constructions that have to do with subsidies provided by mathematical modeling activities – is the core of this article, which is marked (methodologically) by qualitative perquisition of theoretical and bibliographic nature. The deduction, although not exclusive of mathematical thinking, is its most significant atribute, differentiating this thinking of the cognitive actions that are initiated by the approach of particular cases. The particular cases usually are characteristic of the world that is understood as real. This gives rise to favorable reviews – in teaching and learning – to the idea of failure of the mathematical modeling when she (the mathematical modeling) aims at elaboration of mathematical objects, because the activity of modeling (aside from the bond that she keeps with the deduction) can not succeed without the so-called real situations. These (real) situations require (and are demanded by) cognitive processes that are opposing when walking deductive because they (the situations) contain singularities, though the deduction is necessary for the cognitive subject when he not only connect with the mathematical field, but also with several situations that are called real. The directive question of this article is the same as his title: “on can learn Mathematics by investigating particular cases?”. This article – by emphasizing the ties involving the matters “disorder, order, induction and deduction” – presents arguments that lead to results or conclusions in favor of the effectiveness of “learning (and/or construction) of Mathematics with the help of the act of modeling”, without disrespect, in turn, the use of mathematical modeling in order also to improve math skills previously internalized and assimilated by the student.A discussão acerca da possibilidade de construções de objetos matemáticos no âmbito escolar, construções essas que tenham a ver com subsídios proporcionados por atividades de modelagem matemática, é o cerne deste artigo, o qual, em termos metodológicos, é marcado pela perquirição qualitativa de cunho teórico-bibliográfico. A dedução, mesmo não sendo exclusiva do pensamento matemático, é o seu atributo mais significativo, diferenciando tal pensamento de ações cognitivas que se iniciam pela abordagem de casos particulares, normalmente característicos do mundo entendido como real, o que dá margem a críticas fortalecedoras da ideia de insuficiência da modelagem matemática, no ensino e na aprendizagem, visando à elaboração de objetos matemáticos, na medida em que a atividade de modelar (afora o vínculo que mantém com a dedução) não prescinde das chamadas situações reais, que, por abrangerem singularidades, demandam (e são demandadas por) processos cognitivos frequentemente opostos ao caminhar dedutivo, embora a dedução seja necessária ao sujeito cognoscente quando lida não apenas com o domínio matemático, mas também com diversas situações nomeadas de reais. A pergunta-diretriz do presente artigo é a mesma que o intitula: “pode-se aprender Matemática através da investigação de casos particulares?”. Neste texto, mediante ênfase a liames que envolvem os temas “desordem, ordem, indução e dedução”, apresentam-se argumentos que conduzem a resultados ou conclusões favoráveis à eficácia do “aprendizado (e/ou da construção) de Matemática com auxílio do ato de modelar”, sem a desconsideração, a seu turno, do emprego da modelagem matemática com vistas também ao aperfeiçoamento de habilidades matemáticas previamente internalizadas ou assimiladas pelo aluno.Universidade Federal de Santa Catarina2016-11-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsc.br/index.php/alexandria/article/view/1982-5153.2016v9n2p28710.5007/1982-5153.2016v9n2p287Alexandria: Revista de Educação em Ciência e Tecnologia; v. 9 n. 2 (2016); 287-3011982-5153reponame:Alexandria (Florianópolis)instname:Universidade Federal de Santa Catarina (UFSC)instacron:UFSCporhttps://periodicos.ufsc.br/index.php/alexandria/article/view/1982-5153.2016v9n2p287/32873Copyright (c) 2016 Alexandria: Revista de Educação em Ciência e Tecnologiainfo:eu-repo/semantics/openAccessLevy, Lênio Fernandes2019-09-05T15:59:19Zoai:periodicos.ufsc.br:article/42453Revistahttps://periodicos.ufsc.br/index.php/alexandria/oai1982-51531982-5153opendoar:2019-09-05T15:59:19Alexandria (Florianópolis) - Universidade Federal de Santa Catarina (UFSC)false
dc.title.none.fl_str_mv One can learn mathematics by investigating particular cases?
Pode-se aprender matemática através da investigação de casos particulares?
title One can learn mathematics by investigating particular cases?
spellingShingle One can learn mathematics by investigating particular cases?
Levy, Lênio Fernandes
title_short One can learn mathematics by investigating particular cases?
title_full One can learn mathematics by investigating particular cases?
title_fullStr One can learn mathematics by investigating particular cases?
title_full_unstemmed One can learn mathematics by investigating particular cases?
title_sort One can learn mathematics by investigating particular cases?
author Levy, Lênio Fernandes
author_facet Levy, Lênio Fernandes
author_role author
dc.contributor.author.fl_str_mv Levy, Lênio Fernandes
description The discussion about the possibility of construction of mathematical objects in schools – constructions that have to do with subsidies provided by mathematical modeling activities – is the core of this article, which is marked (methodologically) by qualitative perquisition of theoretical and bibliographic nature. The deduction, although not exclusive of mathematical thinking, is its most significant atribute, differentiating this thinking of the cognitive actions that are initiated by the approach of particular cases. The particular cases usually are characteristic of the world that is understood as real. This gives rise to favorable reviews – in teaching and learning – to the idea of failure of the mathematical modeling when she (the mathematical modeling) aims at elaboration of mathematical objects, because the activity of modeling (aside from the bond that she keeps with the deduction) can not succeed without the so-called real situations. These (real) situations require (and are demanded by) cognitive processes that are opposing when walking deductive because they (the situations) contain singularities, though the deduction is necessary for the cognitive subject when he not only connect with the mathematical field, but also with several situations that are called real. The directive question of this article is the same as his title: “on can learn Mathematics by investigating particular cases?”. This article – by emphasizing the ties involving the matters “disorder, order, induction and deduction” – presents arguments that lead to results or conclusions in favor of the effectiveness of “learning (and/or construction) of Mathematics with the help of the act of modeling”, without disrespect, in turn, the use of mathematical modeling in order also to improve math skills previously internalized and assimilated by the student.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-24
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsc.br/index.php/alexandria/article/view/1982-5153.2016v9n2p287
10.5007/1982-5153.2016v9n2p287
url https://periodicos.ufsc.br/index.php/alexandria/article/view/1982-5153.2016v9n2p287
identifier_str_mv 10.5007/1982-5153.2016v9n2p287
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsc.br/index.php/alexandria/article/view/1982-5153.2016v9n2p287/32873
dc.rights.driver.fl_str_mv Copyright (c) 2016 Alexandria: Revista de Educação em Ciência e Tecnologia
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 Alexandria: Revista de Educação em Ciência e Tecnologia
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Catarina
publisher.none.fl_str_mv Universidade Federal de Santa Catarina
dc.source.none.fl_str_mv Alexandria: Revista de Educação em Ciência e Tecnologia; v. 9 n. 2 (2016); 287-301
1982-5153
reponame:Alexandria (Florianópolis)
instname:Universidade Federal de Santa Catarina (UFSC)
instacron:UFSC
instname_str Universidade Federal de Santa Catarina (UFSC)
instacron_str UFSC
institution UFSC
reponame_str Alexandria (Florianópolis)
collection Alexandria (Florianópolis)
repository.name.fl_str_mv Alexandria (Florianópolis) - Universidade Federal de Santa Catarina (UFSC)
repository.mail.fl_str_mv
_version_ 1808843263532072960