Cografos integrais

Detalhes bibliográficos
Autor(a) principal: Ghisleni, Luiza de Paula
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000003gdd
Texto Completo: http://repositorio.ufsm.br/handle/1/23232
Resumo: The search for integral cographs is a topic of interest in Spectral Graph Theory. From this, and motivated by the structural characteristics of these graphs, and by their spectral properties, we propose, in this dissertation, to show that two distinct techniques (algorithmic and combinatorial) can be effectively used to characterize, or determine classes of integral cographs. Through balanced cotrees, we started from cographs associated with balanced cotrees, and with the aid of Algorithm Diagonalize( , ) we determine the eigenvalues of the respective cograph, which are integers; and through combinatorial triangles, we determine which cographs are integrals, of the associates with the triangle Determinant Hosoya Triangle ℋ. The main results obtained are the Theorem 3.4.4, from the article by Allem and Tura (2020), the Theorem 4.3.8 and the Proposition 4.3.6, from the article by Ching, Flórez and Mukhrjee (2020). These lead us to characterize that for = 3 and = 3 + 1, the cographs, respectively, with and without loops, associated to the adjacency matrices * 2 and 2, are integrals; and cographs with balanced cotrees , also they are integrals.
id UFSM_0ea3fc6cb59a2de21a9d8006399a04be
oai_identifier_str oai:repositorio.ufsm.br:1/23232
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Cografos integraisIntegral cographsCografosEspectro integralCoárvore balanceadaTriângulo combinatórioCographsIntegral cographsBalanced cotreesCombinatorial trianglesCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAThe search for integral cographs is a topic of interest in Spectral Graph Theory. From this, and motivated by the structural characteristics of these graphs, and by their spectral properties, we propose, in this dissertation, to show that two distinct techniques (algorithmic and combinatorial) can be effectively used to characterize, or determine classes of integral cographs. Through balanced cotrees, we started from cographs associated with balanced cotrees, and with the aid of Algorithm Diagonalize( , ) we determine the eigenvalues of the respective cograph, which are integers; and through combinatorial triangles, we determine which cographs are integrals, of the associates with the triangle Determinant Hosoya Triangle ℋ. The main results obtained are the Theorem 3.4.4, from the article by Allem and Tura (2020), the Theorem 4.3.8 and the Proposition 4.3.6, from the article by Ching, Flórez and Mukhrjee (2020). These lead us to characterize that for = 3 and = 3 + 1, the cographs, respectively, with and without loops, associated to the adjacency matrices * 2 and 2, are integrals; and cographs with balanced cotrees , also they are integrals.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESDentre os temas de interesse da Teoria Espectral de Grafos, está a busca por cografos integrais. A partir disso, e motivados pelas características estruturais desses grafos, e por suas propriedades espectrais, propomos, na presente dissertação, mostrar que duas técnicas distintas (algorítmica e combinatória) podem ser efetivamente usadas para caracterizar, ou determinar classes de cografos integrais. Por via coárvores balanceadas, partimos de cografos associados a coárvores do tipo balanceadas, e com o auxílio do Algoritmo de Diagonalização( , ) determinamos os autovalores do respectivo cografo, que são inteiros; e por via triângulos combinatórios, determinamos quais cografos, dos tipos associados ao triângulo Determinante do Triângulo de Hosoya ℋ, são integrais. Os principais resultados obtidos são o Teorema 3.4.4, do artigo de Allem e Tura (2020), o Teorema 4.3.8 e a Proposição 4.3.6, do artigo de Ching, Flórez e Mukhrjee (2020). Esses, nos levam a caracterizar que para = 3 e = 3+1, os cografos, respectivamente, com e sem laços, associados as matrizes de adjacência * 2 e 2, são integrais; como também, determinar que cografos com coárvores balanceadas são integrais.Universidade Federal de Santa MariaBrasilMatemáticaUFSMPrograma de Pós-Graduação em MatemáticaCentro de Ciências Naturais e ExatasTura, Fernando Colmanhttp://lattes.cnpq.br/1338555497465445Lazzarin, João RobertoAllem, Luiz EmilioGhisleni, Luiza de Paula2021-12-10T14:48:49Z2021-12-10T14:48:49Z2021-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/23232ark:/26339/0013000003gddporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-12-11T06:02:48Zoai:repositorio.ufsm.br:1/23232Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-12-11T06:02:48Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Cografos integrais
Integral cographs
title Cografos integrais
spellingShingle Cografos integrais
Ghisleni, Luiza de Paula
Cografos
Espectro integral
Coárvore balanceada
Triângulo combinatório
Cographs
Integral cographs
Balanced cotrees
Combinatorial triangles
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Cografos integrais
title_full Cografos integrais
title_fullStr Cografos integrais
title_full_unstemmed Cografos integrais
title_sort Cografos integrais
author Ghisleni, Luiza de Paula
author_facet Ghisleni, Luiza de Paula
author_role author
dc.contributor.none.fl_str_mv Tura, Fernando Colman
http://lattes.cnpq.br/1338555497465445
Lazzarin, João Roberto
Allem, Luiz Emilio
dc.contributor.author.fl_str_mv Ghisleni, Luiza de Paula
dc.subject.por.fl_str_mv Cografos
Espectro integral
Coárvore balanceada
Triângulo combinatório
Cographs
Integral cographs
Balanced cotrees
Combinatorial triangles
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
topic Cografos
Espectro integral
Coárvore balanceada
Triângulo combinatório
Cographs
Integral cographs
Balanced cotrees
Combinatorial triangles
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
description The search for integral cographs is a topic of interest in Spectral Graph Theory. From this, and motivated by the structural characteristics of these graphs, and by their spectral properties, we propose, in this dissertation, to show that two distinct techniques (algorithmic and combinatorial) can be effectively used to characterize, or determine classes of integral cographs. Through balanced cotrees, we started from cographs associated with balanced cotrees, and with the aid of Algorithm Diagonalize( , ) we determine the eigenvalues of the respective cograph, which are integers; and through combinatorial triangles, we determine which cographs are integrals, of the associates with the triangle Determinant Hosoya Triangle ℋ. The main results obtained are the Theorem 3.4.4, from the article by Allem and Tura (2020), the Theorem 4.3.8 and the Proposition 4.3.6, from the article by Ching, Flórez and Mukhrjee (2020). These lead us to characterize that for = 3 and = 3 + 1, the cographs, respectively, with and without loops, associated to the adjacency matrices * 2 and 2, are integrals; and cographs with balanced cotrees , also they are integrals.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-10T14:48:49Z
2021-12-10T14:48:49Z
2021-09-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/23232
dc.identifier.dark.fl_str_mv ark:/26339/0013000003gdd
url http://repositorio.ufsm.br/handle/1/23232
identifier_str_mv ark:/26339/0013000003gdd
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Matemática
UFSM
Programa de Pós-Graduação em Matemática
Centro de Ciências Naturais e Exatas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Matemática
UFSM
Programa de Pós-Graduação em Matemática
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172275458015232