Cografos integrais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/0013000003gdd |
Texto Completo: | http://repositorio.ufsm.br/handle/1/23232 |
Resumo: | The search for integral cographs is a topic of interest in Spectral Graph Theory. From this, and motivated by the structural characteristics of these graphs, and by their spectral properties, we propose, in this dissertation, to show that two distinct techniques (algorithmic and combinatorial) can be effectively used to characterize, or determine classes of integral cographs. Through balanced cotrees, we started from cographs associated with balanced cotrees, and with the aid of Algorithm Diagonalize( , ) we determine the eigenvalues of the respective cograph, which are integers; and through combinatorial triangles, we determine which cographs are integrals, of the associates with the triangle Determinant Hosoya Triangle ℋ. The main results obtained are the Theorem 3.4.4, from the article by Allem and Tura (2020), the Theorem 4.3.8 and the Proposition 4.3.6, from the article by Ching, Flórez and Mukhrjee (2020). These lead us to characterize that for = 3 and = 3 + 1, the cographs, respectively, with and without loops, associated to the adjacency matrices * 2 and 2, are integrals; and cographs with balanced cotrees , also they are integrals. |
id |
UFSM_0ea3fc6cb59a2de21a9d8006399a04be |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/23232 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Cografos integraisIntegral cographsCografosEspectro integralCoárvore balanceadaTriângulo combinatórioCographsIntegral cographsBalanced cotreesCombinatorial trianglesCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAThe search for integral cographs is a topic of interest in Spectral Graph Theory. From this, and motivated by the structural characteristics of these graphs, and by their spectral properties, we propose, in this dissertation, to show that two distinct techniques (algorithmic and combinatorial) can be effectively used to characterize, or determine classes of integral cographs. Through balanced cotrees, we started from cographs associated with balanced cotrees, and with the aid of Algorithm Diagonalize( , ) we determine the eigenvalues of the respective cograph, which are integers; and through combinatorial triangles, we determine which cographs are integrals, of the associates with the triangle Determinant Hosoya Triangle ℋ. The main results obtained are the Theorem 3.4.4, from the article by Allem and Tura (2020), the Theorem 4.3.8 and the Proposition 4.3.6, from the article by Ching, Flórez and Mukhrjee (2020). These lead us to characterize that for = 3 and = 3 + 1, the cographs, respectively, with and without loops, associated to the adjacency matrices * 2 and 2, are integrals; and cographs with balanced cotrees , also they are integrals.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESDentre os temas de interesse da Teoria Espectral de Grafos, está a busca por cografos integrais. A partir disso, e motivados pelas características estruturais desses grafos, e por suas propriedades espectrais, propomos, na presente dissertação, mostrar que duas técnicas distintas (algorítmica e combinatória) podem ser efetivamente usadas para caracterizar, ou determinar classes de cografos integrais. Por via coárvores balanceadas, partimos de cografos associados a coárvores do tipo balanceadas, e com o auxílio do Algoritmo de Diagonalização( , ) determinamos os autovalores do respectivo cografo, que são inteiros; e por via triângulos combinatórios, determinamos quais cografos, dos tipos associados ao triângulo Determinante do Triângulo de Hosoya ℋ, são integrais. Os principais resultados obtidos são o Teorema 3.4.4, do artigo de Allem e Tura (2020), o Teorema 4.3.8 e a Proposição 4.3.6, do artigo de Ching, Flórez e Mukhrjee (2020). Esses, nos levam a caracterizar que para = 3 e = 3+1, os cografos, respectivamente, com e sem laços, associados as matrizes de adjacência * 2 e 2, são integrais; como também, determinar que cografos com coárvores balanceadas são integrais.Universidade Federal de Santa MariaBrasilMatemáticaUFSMPrograma de Pós-Graduação em MatemáticaCentro de Ciências Naturais e ExatasTura, Fernando Colmanhttp://lattes.cnpq.br/1338555497465445Lazzarin, João RobertoAllem, Luiz EmilioGhisleni, Luiza de Paula2021-12-10T14:48:49Z2021-12-10T14:48:49Z2021-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/23232ark:/26339/0013000003gddporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-12-11T06:02:48Zoai:repositorio.ufsm.br:1/23232Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-12-11T06:02:48Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Cografos integrais Integral cographs |
title |
Cografos integrais |
spellingShingle |
Cografos integrais Ghisleni, Luiza de Paula Cografos Espectro integral Coárvore balanceada Triângulo combinatório Cographs Integral cographs Balanced cotrees Combinatorial triangles CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Cografos integrais |
title_full |
Cografos integrais |
title_fullStr |
Cografos integrais |
title_full_unstemmed |
Cografos integrais |
title_sort |
Cografos integrais |
author |
Ghisleni, Luiza de Paula |
author_facet |
Ghisleni, Luiza de Paula |
author_role |
author |
dc.contributor.none.fl_str_mv |
Tura, Fernando Colman http://lattes.cnpq.br/1338555497465445 Lazzarin, João Roberto Allem, Luiz Emilio |
dc.contributor.author.fl_str_mv |
Ghisleni, Luiza de Paula |
dc.subject.por.fl_str_mv |
Cografos Espectro integral Coárvore balanceada Triângulo combinatório Cographs Integral cographs Balanced cotrees Combinatorial triangles CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
Cografos Espectro integral Coárvore balanceada Triângulo combinatório Cographs Integral cographs Balanced cotrees Combinatorial triangles CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
The search for integral cographs is a topic of interest in Spectral Graph Theory. From this, and motivated by the structural characteristics of these graphs, and by their spectral properties, we propose, in this dissertation, to show that two distinct techniques (algorithmic and combinatorial) can be effectively used to characterize, or determine classes of integral cographs. Through balanced cotrees, we started from cographs associated with balanced cotrees, and with the aid of Algorithm Diagonalize( , ) we determine the eigenvalues of the respective cograph, which are integers; and through combinatorial triangles, we determine which cographs are integrals, of the associates with the triangle Determinant Hosoya Triangle ℋ. The main results obtained are the Theorem 3.4.4, from the article by Allem and Tura (2020), the Theorem 4.3.8 and the Proposition 4.3.6, from the article by Ching, Flórez and Mukhrjee (2020). These lead us to characterize that for = 3 and = 3 + 1, the cographs, respectively, with and without loops, associated to the adjacency matrices * 2 and 2, are integrals; and cographs with balanced cotrees , also they are integrals. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-10T14:48:49Z 2021-12-10T14:48:49Z 2021-09-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/23232 |
dc.identifier.dark.fl_str_mv |
ark:/26339/0013000003gdd |
url |
http://repositorio.ufsm.br/handle/1/23232 |
identifier_str_mv |
ark:/26339/0013000003gdd |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Matemática UFSM Programa de Pós-Graduação em Matemática Centro de Ciências Naturais e Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Matemática UFSM Programa de Pós-Graduação em Matemática Centro de Ciências Naturais e Exatas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172275458015232 |