Interpretações dos números racionais: uma análise no 7º ano do ensino fundamental

Detalhes bibliográficos
Autor(a) principal: Winkelmann, Claudia Aparecida
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000002bj0
Texto Completo: http://repositorio.ufsm.br/handle/1/28556
Resumo: This research follows a qualitative approach, aiming to investigate understandings about interpretations of rational numbers in fractional representation, when activities that emphasize figural records are proposed. From this point of view, the semiotic representation registers proposed by Raymond Duval and the theory of proportional reasoning, developed by Susan Lamon, are adopted as theoretical framework. The text follows a multipaper structure, composed of four manuscripts, with their respective specific objectives (i) analyzing mobilizations of figural registers, linked to rational numbers in fractional representation, with support of the manipulative material Frac-Soma; (ii) investigating understandings about the measure interpretation, through the compensatory principle and the recursive partition principle; iii) exploring concepts related to comparison, ordering and equivalence of rational numbers in fractional representation in approaches of continuous and discrete quantities, when associated with the part-whole interpretation; iv) analyzing understandings about sharing and comparison of quantities through the unitization process and its relations with the quotient and operator interpretations. To meet these objectives, the sources for triangulation of results considered: students' protocols, systematized during the meetings in auxiliary sheets; audio and video recordings that reveal dialogues and gestures that occurred during the process of solving the activities; photographs that reveal moments of manipulation of the Frac-Soma pieces; teacher's/researcher's with reflections on the development of the sequence. Among the results, it is evident that the Frac-Soma, as a manipulative material, contributed to unleash figural records that are associated with operational apprehension, showing mereological and positional changes. Also, the process of successive partitioning of the unit, used in the making of the Frac-Soma, enhanced the acquisition of concepts related to the main notion of rational number in fractional representation, combining evidence of the interpretations part-whole, quotient and measure. Moreover, in the activities related to the measure interpretation, we identified signs of the compensatory principle and the principle of recursive partitioning when we established relations based on the fact that the smaller the unit of measure, the greater the number of units needed, and that whole divisions should consider subunits in accordance with the measure requested. Regarding the part-whole interpretation, the understanding of equivalence relations through the unitization process stands out. On the other hand, in this same interpretation there are difficulties regarding the conservation of area in figures that are not subdivided into parts of the same size, as well as in the process of determining fractions from discrete quantities. Regarding the notions related to sharing, the concepts were understood in a satisfactory manner, involving the necessary partitioning to understand the quotient interpretation. Finally, it should be noted that generalizations were identified from the multiplicative concepts associated with the operator interpretation.
id UFSM_2c6145a1810463fd559d7670d2390889
oai_identifier_str oai:repositorio.ufsm.br:1/28556
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Interpretações dos números racionais: uma análise no 7º ano do ensino fundamentalInterpretations of rational numbers: an analysis of the 7th grade of elementary schoolNúmeros racionaisRegistros de representação semióticaFrac-SomaEducação matemáticaRational numbersRegisters of semiotic representationMathematics educationCNPQ::CIENCIAS HUMANAS::EDUCACAOThis research follows a qualitative approach, aiming to investigate understandings about interpretations of rational numbers in fractional representation, when activities that emphasize figural records are proposed. From this point of view, the semiotic representation registers proposed by Raymond Duval and the theory of proportional reasoning, developed by Susan Lamon, are adopted as theoretical framework. The text follows a multipaper structure, composed of four manuscripts, with their respective specific objectives (i) analyzing mobilizations of figural registers, linked to rational numbers in fractional representation, with support of the manipulative material Frac-Soma; (ii) investigating understandings about the measure interpretation, through the compensatory principle and the recursive partition principle; iii) exploring concepts related to comparison, ordering and equivalence of rational numbers in fractional representation in approaches of continuous and discrete quantities, when associated with the part-whole interpretation; iv) analyzing understandings about sharing and comparison of quantities through the unitization process and its relations with the quotient and operator interpretations. To meet these objectives, the sources for triangulation of results considered: students' protocols, systematized during the meetings in auxiliary sheets; audio and video recordings that reveal dialogues and gestures that occurred during the process of solving the activities; photographs that reveal moments of manipulation of the Frac-Soma pieces; teacher's/researcher's with reflections on the development of the sequence. Among the results, it is evident that the Frac-Soma, as a manipulative material, contributed to unleash figural records that are associated with operational apprehension, showing mereological and positional changes. Also, the process of successive partitioning of the unit, used in the making of the Frac-Soma, enhanced the acquisition of concepts related to the main notion of rational number in fractional representation, combining evidence of the interpretations part-whole, quotient and measure. Moreover, in the activities related to the measure interpretation, we identified signs of the compensatory principle and the principle of recursive partitioning when we established relations based on the fact that the smaller the unit of measure, the greater the number of units needed, and that whole divisions should consider subunits in accordance with the measure requested. Regarding the part-whole interpretation, the understanding of equivalence relations through the unitization process stands out. On the other hand, in this same interpretation there are difficulties regarding the conservation of area in figures that are not subdivided into parts of the same size, as well as in the process of determining fractions from discrete quantities. Regarding the notions related to sharing, the concepts were understood in a satisfactory manner, involving the necessary partitioning to understand the quotient interpretation. Finally, it should be noted that generalizations were identified from the multiplicative concepts associated with the operator interpretation.A presente pesquisa segue uma abordagem qualitativa, com objetivo de investigar entendimentos sobre interpretações de números racionais na representação fracionária, quando são propostas atividades que enfatizam registros figurais. Por essa ótica, adota-se como referencial teórico os registros de representação semiótica, propostos por Raymond Duval e a teoria do raciocínio proporcional, elaborada por Susan Lamon. O texto segue a estrutura multipapper, composto por quatro manuscritos, com os respectivos objetivos específicos: i) analisar mobilizações de registros figurais, vinculados aos números racionais na representação fracionária, com apoio do material manipulável Frac-Soma; ii) investigar entendimentos sobre a interpretação medida, por meio do princípio compensatório e do princípio de partição recursiva; iii) explorar conceitos relacionados à comparação, ordenação e equivalência de números racionais na representação fracionária em abordagens de quantidades contínuas e discretas, quando associados à interpretação parte-todo; iv) analisar entendimentos sobre partilha e comparação de quantidades por meio do processo de unitização e suas relações com as interpretações quociente e operador. Para atender tais objetivos, as fontes para triangulação dos resultados consideraram: protocolos dos alunos, sistematizados durante os encontros em folhas auxiliares; gravações em áudio e vídeo que revelam diálogos e gestos ocorridos no processo de resolução das atividades; fotografias que revelam momentos de manipulação das peças do Frac-Soma; e diário de bordo da professora/pesquisadora com reflexões sobre o desenvolvimento da sequência. Dentre os resultados, evidencia-se que o Frac-Soma, como material manipulável, contribuiu para desencadear registros figurais que se associam à apreensão operatória, evidenciando modificações mereológicas e posicionais. Também, verifica-se que o processo de particionamento sucessivo da unidade, utilizado na confecção do Frac-Soma, potencializou a aquisição de conceitos relativos à noção principal de número racional na representação fracionária, aliando indícios das interpretações parte-todo, quociente e medida. Além disso, nas atividades relativas à intepretação medida, foram identificados indícios do princípio compensatório e do princípio da partição recursiva ao serem estabelecidas relações direcionadas ao fato de que quanto menor for a unidade de medida, maior será a quantidade de unidades necessárias, bem como que divisões do inteiro devem considerar subunidades em conformidade com a medida solicitada. Ao que refere à interpretação parte-todo, destaca-se a compreensão das relações de equivalência por meio do processo de unitização. Por outro lado, nessa mesma interpretação, verificam-se dificuldades ao que se refere à determinação de números racionais em quantidades discretas, bem como ao utilizar o processo de conservação de área. Ao que se refere às noções relativas à partilha, os conceitos foram compreendidos de maneira satisfatória, envolvendo particionamentos necessários à compreensão da interpretação quociente. Por fim, cabe destacar que foram realizadas generalizações a partir dos conceitos multiplicativos associados à interpretação operador.Universidade Federal de Santa MariaBrasilEducaçãoUFSMPrograma de Pós-Graduação em Educação Matemática e Ensino de FísicaCentro de Ciências Naturais e ExatasMariani, Rita de Cássia Pistóiahttp://lattes.cnpq.br/8330933788557081Soares, Maria Arlita da SilveiraPozebon, SimoneSantarosa, Maria Cecília PereiraWinkelmann, Claudia Aparecida2023-04-04T19:01:09Z2023-04-04T19:01:09Z2023-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/28556ark:/26339/0013000002bj0porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-04-04T19:01:09Zoai:repositorio.ufsm.br:1/28556Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-04-04T19:01:09Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Interpretações dos números racionais: uma análise no 7º ano do ensino fundamental
Interpretations of rational numbers: an analysis of the 7th grade of elementary school
title Interpretações dos números racionais: uma análise no 7º ano do ensino fundamental
spellingShingle Interpretações dos números racionais: uma análise no 7º ano do ensino fundamental
Winkelmann, Claudia Aparecida
Números racionais
Registros de representação semiótica
Frac-Soma
Educação matemática
Rational numbers
Registers of semiotic representation
Mathematics education
CNPQ::CIENCIAS HUMANAS::EDUCACAO
title_short Interpretações dos números racionais: uma análise no 7º ano do ensino fundamental
title_full Interpretações dos números racionais: uma análise no 7º ano do ensino fundamental
title_fullStr Interpretações dos números racionais: uma análise no 7º ano do ensino fundamental
title_full_unstemmed Interpretações dos números racionais: uma análise no 7º ano do ensino fundamental
title_sort Interpretações dos números racionais: uma análise no 7º ano do ensino fundamental
author Winkelmann, Claudia Aparecida
author_facet Winkelmann, Claudia Aparecida
author_role author
dc.contributor.none.fl_str_mv Mariani, Rita de Cássia Pistóia
http://lattes.cnpq.br/8330933788557081
Soares, Maria Arlita da Silveira
Pozebon, Simone
Santarosa, Maria Cecília Pereira
dc.contributor.author.fl_str_mv Winkelmann, Claudia Aparecida
dc.subject.por.fl_str_mv Números racionais
Registros de representação semiótica
Frac-Soma
Educação matemática
Rational numbers
Registers of semiotic representation
Mathematics education
CNPQ::CIENCIAS HUMANAS::EDUCACAO
topic Números racionais
Registros de representação semiótica
Frac-Soma
Educação matemática
Rational numbers
Registers of semiotic representation
Mathematics education
CNPQ::CIENCIAS HUMANAS::EDUCACAO
description This research follows a qualitative approach, aiming to investigate understandings about interpretations of rational numbers in fractional representation, when activities that emphasize figural records are proposed. From this point of view, the semiotic representation registers proposed by Raymond Duval and the theory of proportional reasoning, developed by Susan Lamon, are adopted as theoretical framework. The text follows a multipaper structure, composed of four manuscripts, with their respective specific objectives (i) analyzing mobilizations of figural registers, linked to rational numbers in fractional representation, with support of the manipulative material Frac-Soma; (ii) investigating understandings about the measure interpretation, through the compensatory principle and the recursive partition principle; iii) exploring concepts related to comparison, ordering and equivalence of rational numbers in fractional representation in approaches of continuous and discrete quantities, when associated with the part-whole interpretation; iv) analyzing understandings about sharing and comparison of quantities through the unitization process and its relations with the quotient and operator interpretations. To meet these objectives, the sources for triangulation of results considered: students' protocols, systematized during the meetings in auxiliary sheets; audio and video recordings that reveal dialogues and gestures that occurred during the process of solving the activities; photographs that reveal moments of manipulation of the Frac-Soma pieces; teacher's/researcher's with reflections on the development of the sequence. Among the results, it is evident that the Frac-Soma, as a manipulative material, contributed to unleash figural records that are associated with operational apprehension, showing mereological and positional changes. Also, the process of successive partitioning of the unit, used in the making of the Frac-Soma, enhanced the acquisition of concepts related to the main notion of rational number in fractional representation, combining evidence of the interpretations part-whole, quotient and measure. Moreover, in the activities related to the measure interpretation, we identified signs of the compensatory principle and the principle of recursive partitioning when we established relations based on the fact that the smaller the unit of measure, the greater the number of units needed, and that whole divisions should consider subunits in accordance with the measure requested. Regarding the part-whole interpretation, the understanding of equivalence relations through the unitization process stands out. On the other hand, in this same interpretation there are difficulties regarding the conservation of area in figures that are not subdivided into parts of the same size, as well as in the process of determining fractions from discrete quantities. Regarding the notions related to sharing, the concepts were understood in a satisfactory manner, involving the necessary partitioning to understand the quotient interpretation. Finally, it should be noted that generalizations were identified from the multiplicative concepts associated with the operator interpretation.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-04T19:01:09Z
2023-04-04T19:01:09Z
2023-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/28556
dc.identifier.dark.fl_str_mv ark:/26339/0013000002bj0
url http://repositorio.ufsm.br/handle/1/28556
identifier_str_mv ark:/26339/0013000002bj0
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Educação
UFSM
Programa de Pós-Graduação em Educação Matemática e Ensino de Física
Centro de Ciências Naturais e Exatas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Educação
UFSM
Programa de Pós-Graduação em Educação Matemática e Ensino de Física
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172268853035008