Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000cd06 |
Texto Completo: | http://repositorio.ufsm.br/handle/1/18271 |
Resumo: | One of the biggest problems associated with the use of demand forecasts at the support the decision-making is the choice of forecasting method to be implemented. In the context, present a behavior different from other sectors, the real estate market has difficulty in finding correct methods to predict its demand, indeed, due to the significant time interval between the project decision making, investment, and the actual entry of the enterprise in the market dispute. This complexity leads to the choice of wrong methods, resulting in large inventories of residential units, generating high costs for builders and incorporators, as it has since 2014 in São Paulo, the most representative real estate market of Brazil. Therefore, this research aims to propose a hybrid model of time series for forecasting demand of real estate in the city of São Paulo. For this, will be used data referring to the time series of residential units sales, provided by SECOVI-SP. At first, the Exponential Smoothing, Box-Jenkins, Conditional Heteroskedasticity and Artificial Neural Networks models are modeled individually, posteriorly these are combined by means of six forecast combining techniques. The techniques used are Arithmetic Mean, Geometric Mean, Harmonic Mean, Minimum Variance, Linear Regression and Principal Component Analysis. The measures of accuracy to measure the obtained results and to select the best model are the RMSE, MAPE, MAE and UTheil of forecast. The results showed that the Linear Regression with independent variable being the combination of the SARIMA(2,0,0) (2,0,0)12 and MLP/RNA(18,25,1) models through Principal Component Analysis provided a performance satisfactory prediction, with RMSE of 349.21, MAPE of 17.1%, MAE of 287.62 and UTheil of 0.298. Thus, demonstrating that the combination and hybridization of time series models allowed a significant increase in prediction performance. Finally, we used the proposed model to forecast the demand of real estate between July 2016 and December 2017. The results were in agreement with estimates of specialists in the area, stating that in 2017 the real estate market will recover, however while these estimate that the market grows 10% in 2017, the model shows a growth of 19%. |
id |
UFSM_46e329bd446d4e7ecc71c9fac569c733 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/18271 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São PauloHybrid model of time series for forecasting demand of the real estate market of São PauloPrevisão de demandaMercado imobiliárioCombinação de previsõesDemand forecastReal estate marketCombination of forecastsCNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAOOne of the biggest problems associated with the use of demand forecasts at the support the decision-making is the choice of forecasting method to be implemented. In the context, present a behavior different from other sectors, the real estate market has difficulty in finding correct methods to predict its demand, indeed, due to the significant time interval between the project decision making, investment, and the actual entry of the enterprise in the market dispute. This complexity leads to the choice of wrong methods, resulting in large inventories of residential units, generating high costs for builders and incorporators, as it has since 2014 in São Paulo, the most representative real estate market of Brazil. Therefore, this research aims to propose a hybrid model of time series for forecasting demand of real estate in the city of São Paulo. For this, will be used data referring to the time series of residential units sales, provided by SECOVI-SP. At first, the Exponential Smoothing, Box-Jenkins, Conditional Heteroskedasticity and Artificial Neural Networks models are modeled individually, posteriorly these are combined by means of six forecast combining techniques. The techniques used are Arithmetic Mean, Geometric Mean, Harmonic Mean, Minimum Variance, Linear Regression and Principal Component Analysis. The measures of accuracy to measure the obtained results and to select the best model are the RMSE, MAPE, MAE and UTheil of forecast. The results showed that the Linear Regression with independent variable being the combination of the SARIMA(2,0,0) (2,0,0)12 and MLP/RNA(18,25,1) models through Principal Component Analysis provided a performance satisfactory prediction, with RMSE of 349.21, MAPE of 17.1%, MAE of 287.62 and UTheil of 0.298. Thus, demonstrating that the combination and hybridization of time series models allowed a significant increase in prediction performance. Finally, we used the proposed model to forecast the demand of real estate between July 2016 and December 2017. The results were in agreement with estimates of specialists in the area, stating that in 2017 the real estate market will recover, however while these estimate that the market grows 10% in 2017, the model shows a growth of 19%.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESUm dos maiores problemas associados com o uso de previsões de demanda no apoio à tomada de decisão é a escolha do método de previsão a ser implementado. Nesse contexto, por terem um comportamento diferente dos demais setores, o setor imobiliário possui dificuldade de encontrar métodos corretos para prever sua demanda, de fato, devido ao expressivo intervalo de tempo entre a tomada de decisão do projeto, de investimento e a entrada efetiva do empreendimento na disputa de mercado. Essa complexidade acarreta na escolha de métodos errôneos, ocasionando em grandes estoques de unidades residenciais, gerando altos custos para as construtoras e incorporadoras, como acontece desde 2014 na cidade de São Paulo, o mercado imobiliário mais representativo do país. Diante disso, essa pesquisa tem como objetivo propor um modelo híbrido de séries temporais para previsão de demanda de imóveis na cidade de São Paulo. Para isso, são utilizados dados referentes à série temporal de vendas de unidades residenciais, fornecidos pelo SECOVI-SP. Os modelos de Suavização Exponencial, de Box-Jenkins, de Heterocedasticidade Condicional e de Redes Neurais Artificiais são modelados individualmente, posteriormente estes são combinados por meio de seis técnicas de combinação de previsão. As técnicas utilizadas são Média Aritmética, Média Geométrica, Média Harmônica, Variância Mínima, Regressão Linear e Análise de Componentes Principais. As medidas de acurácia para mensurar os resultados obtidos e selecionar o melhor modelo, são o RMSE, MAPE, MAE e UTheil de previsão. Os resultados mostraram que a Regressão Linear com variável independente sendo a combinação do modelo SARIMA (2,0,0)(2,0,0)12 e MLP/RNA (18,25,1) via Análise de Componentes Principais forneceu um desempenho de previsão satisfatório, com RMSE de 349, 21, MAPE de 17,1%, MAE de 287, 62 e UTheil de 0,298. Assim, demonstrando que a combinação e hibridização de modelos de séries temporais possibilitou um aumento significativo no desempenho de previsão. Por fim, utilizou-se o modelo proposto para previsão da demanda de imóveis entre julho de 2016 a dezembro de 2017. Os resultados foram ao encontro de estimativas de especialistas da área, constatando que em 2017 o mercado imobiliário vai se recuperar, entretanto enquanto estes estimam que o mercado cresça 10% em 2017, o modelo revela um crescimento de 19%.Universidade Federal de Santa MariaBrasilEngenharia de ProduçãoUFSMPrograma de Pós-Graduação em Engenharia de ProduçãoCentro de TecnologiaWeise, Andreas Dittmarhttp://lattes.cnpq.br/1329623071793399Braghirolli, Lynceo Falavignahttp://lattes.cnpq.br/2992623886366532Bornia, Antonio Cezarhttp://lattes.cnpq.br/1042018203108549Moro, Matheus Fernando2019-09-18T17:56:33Z2019-09-18T17:56:33Z2017-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/18271ark:/26339/001300000cd06porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-09-19T06:01:15Zoai:repositorio.ufsm.br:1/18271Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2019-09-19T06:01:15Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo Hybrid model of time series for forecasting demand of the real estate market of São Paulo |
title |
Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo |
spellingShingle |
Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo Moro, Matheus Fernando Previsão de demanda Mercado imobiliário Combinação de previsões Demand forecast Real estate market Combination of forecasts CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO |
title_short |
Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo |
title_full |
Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo |
title_fullStr |
Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo |
title_full_unstemmed |
Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo |
title_sort |
Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo |
author |
Moro, Matheus Fernando |
author_facet |
Moro, Matheus Fernando |
author_role |
author |
dc.contributor.none.fl_str_mv |
Weise, Andreas Dittmar http://lattes.cnpq.br/1329623071793399 Braghirolli, Lynceo Falavigna http://lattes.cnpq.br/2992623886366532 Bornia, Antonio Cezar http://lattes.cnpq.br/1042018203108549 |
dc.contributor.author.fl_str_mv |
Moro, Matheus Fernando |
dc.subject.por.fl_str_mv |
Previsão de demanda Mercado imobiliário Combinação de previsões Demand forecast Real estate market Combination of forecasts CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO |
topic |
Previsão de demanda Mercado imobiliário Combinação de previsões Demand forecast Real estate market Combination of forecasts CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO |
description |
One of the biggest problems associated with the use of demand forecasts at the support the decision-making is the choice of forecasting method to be implemented. In the context, present a behavior different from other sectors, the real estate market has difficulty in finding correct methods to predict its demand, indeed, due to the significant time interval between the project decision making, investment, and the actual entry of the enterprise in the market dispute. This complexity leads to the choice of wrong methods, resulting in large inventories of residential units, generating high costs for builders and incorporators, as it has since 2014 in São Paulo, the most representative real estate market of Brazil. Therefore, this research aims to propose a hybrid model of time series for forecasting demand of real estate in the city of São Paulo. For this, will be used data referring to the time series of residential units sales, provided by SECOVI-SP. At first, the Exponential Smoothing, Box-Jenkins, Conditional Heteroskedasticity and Artificial Neural Networks models are modeled individually, posteriorly these are combined by means of six forecast combining techniques. The techniques used are Arithmetic Mean, Geometric Mean, Harmonic Mean, Minimum Variance, Linear Regression and Principal Component Analysis. The measures of accuracy to measure the obtained results and to select the best model are the RMSE, MAPE, MAE and UTheil of forecast. The results showed that the Linear Regression with independent variable being the combination of the SARIMA(2,0,0) (2,0,0)12 and MLP/RNA(18,25,1) models through Principal Component Analysis provided a performance satisfactory prediction, with RMSE of 349.21, MAPE of 17.1%, MAE of 287.62 and UTheil of 0.298. Thus, demonstrating that the combination and hybridization of time series models allowed a significant increase in prediction performance. Finally, we used the proposed model to forecast the demand of real estate between July 2016 and December 2017. The results were in agreement with estimates of specialists in the area, stating that in 2017 the real estate market will recover, however while these estimate that the market grows 10% in 2017, the model shows a growth of 19%. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02-15 2019-09-18T17:56:33Z 2019-09-18T17:56:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/18271 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000cd06 |
url |
http://repositorio.ufsm.br/handle/1/18271 |
identifier_str_mv |
ark:/26339/001300000cd06 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia de Produção UFSM Programa de Pós-Graduação em Engenharia de Produção Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia de Produção UFSM Programa de Pós-Graduação em Engenharia de Produção Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172324777787392 |