Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo

Detalhes bibliográficos
Autor(a) principal: Moro, Matheus Fernando
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000cd06
Texto Completo: http://repositorio.ufsm.br/handle/1/18271
Resumo: One of the biggest problems associated with the use of demand forecasts at the support the decision-making is the choice of forecasting method to be implemented. In the context, present a behavior different from other sectors, the real estate market has difficulty in finding correct methods to predict its demand, indeed, due to the significant time interval between the project decision making, investment, and the actual entry of the enterprise in the market dispute. This complexity leads to the choice of wrong methods, resulting in large inventories of residential units, generating high costs for builders and incorporators, as it has since 2014 in São Paulo, the most representative real estate market of Brazil. Therefore, this research aims to propose a hybrid model of time series for forecasting demand of real estate in the city of São Paulo. For this, will be used data referring to the time series of residential units sales, provided by SECOVI-SP. At first, the Exponential Smoothing, Box-Jenkins, Conditional Heteroskedasticity and Artificial Neural Networks models are modeled individually, posteriorly these are combined by means of six forecast combining techniques. The techniques used are Arithmetic Mean, Geometric Mean, Harmonic Mean, Minimum Variance, Linear Regression and Principal Component Analysis. The measures of accuracy to measure the obtained results and to select the best model are the RMSE, MAPE, MAE and UTheil of forecast. The results showed that the Linear Regression with independent variable being the combination of the SARIMA(2,0,0) (2,0,0)12 and MLP/RNA(18,25,1) models through Principal Component Analysis provided a performance satisfactory prediction, with RMSE of 349.21, MAPE of 17.1%, MAE of 287.62 and UTheil of 0.298. Thus, demonstrating that the combination and hybridization of time series models allowed a significant increase in prediction performance. Finally, we used the proposed model to forecast the demand of real estate between July 2016 and December 2017. The results were in agreement with estimates of specialists in the area, stating that in 2017 the real estate market will recover, however while these estimate that the market grows 10% in 2017, the model shows a growth of 19%.
id UFSM_46e329bd446d4e7ecc71c9fac569c733
oai_identifier_str oai:repositorio.ufsm.br:1/18271
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São PauloHybrid model of time series for forecasting demand of the real estate market of São PauloPrevisão de demandaMercado imobiliárioCombinação de previsõesDemand forecastReal estate marketCombination of forecastsCNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAOOne of the biggest problems associated with the use of demand forecasts at the support the decision-making is the choice of forecasting method to be implemented. In the context, present a behavior different from other sectors, the real estate market has difficulty in finding correct methods to predict its demand, indeed, due to the significant time interval between the project decision making, investment, and the actual entry of the enterprise in the market dispute. This complexity leads to the choice of wrong methods, resulting in large inventories of residential units, generating high costs for builders and incorporators, as it has since 2014 in São Paulo, the most representative real estate market of Brazil. Therefore, this research aims to propose a hybrid model of time series for forecasting demand of real estate in the city of São Paulo. For this, will be used data referring to the time series of residential units sales, provided by SECOVI-SP. At first, the Exponential Smoothing, Box-Jenkins, Conditional Heteroskedasticity and Artificial Neural Networks models are modeled individually, posteriorly these are combined by means of six forecast combining techniques. The techniques used are Arithmetic Mean, Geometric Mean, Harmonic Mean, Minimum Variance, Linear Regression and Principal Component Analysis. The measures of accuracy to measure the obtained results and to select the best model are the RMSE, MAPE, MAE and UTheil of forecast. The results showed that the Linear Regression with independent variable being the combination of the SARIMA(2,0,0) (2,0,0)12 and MLP/RNA(18,25,1) models through Principal Component Analysis provided a performance satisfactory prediction, with RMSE of 349.21, MAPE of 17.1%, MAE of 287.62 and UTheil of 0.298. Thus, demonstrating that the combination and hybridization of time series models allowed a significant increase in prediction performance. Finally, we used the proposed model to forecast the demand of real estate between July 2016 and December 2017. The results were in agreement with estimates of specialists in the area, stating that in 2017 the real estate market will recover, however while these estimate that the market grows 10% in 2017, the model shows a growth of 19%.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESUm dos maiores problemas associados com o uso de previsões de demanda no apoio à tomada de decisão é a escolha do método de previsão a ser implementado. Nesse contexto, por terem um comportamento diferente dos demais setores, o setor imobiliário possui dificuldade de encontrar métodos corretos para prever sua demanda, de fato, devido ao expressivo intervalo de tempo entre a tomada de decisão do projeto, de investimento e a entrada efetiva do empreendimento na disputa de mercado. Essa complexidade acarreta na escolha de métodos errôneos, ocasionando em grandes estoques de unidades residenciais, gerando altos custos para as construtoras e incorporadoras, como acontece desde 2014 na cidade de São Paulo, o mercado imobiliário mais representativo do país. Diante disso, essa pesquisa tem como objetivo propor um modelo híbrido de séries temporais para previsão de demanda de imóveis na cidade de São Paulo. Para isso, são utilizados dados referentes à série temporal de vendas de unidades residenciais, fornecidos pelo SECOVI-SP. Os modelos de Suavização Exponencial, de Box-Jenkins, de Heterocedasticidade Condicional e de Redes Neurais Artificiais são modelados individualmente, posteriormente estes são combinados por meio de seis técnicas de combinação de previsão. As técnicas utilizadas são Média Aritmética, Média Geométrica, Média Harmônica, Variância Mínima, Regressão Linear e Análise de Componentes Principais. As medidas de acurácia para mensurar os resultados obtidos e selecionar o melhor modelo, são o RMSE, MAPE, MAE e UTheil de previsão. Os resultados mostraram que a Regressão Linear com variável independente sendo a combinação do modelo SARIMA (2,0,0)(2,0,0)12 e MLP/RNA (18,25,1) via Análise de Componentes Principais forneceu um desempenho de previsão satisfatório, com RMSE de 349, 21, MAPE de 17,1%, MAE de 287, 62 e UTheil de 0,298. Assim, demonstrando que a combinação e hibridização de modelos de séries temporais possibilitou um aumento significativo no desempenho de previsão. Por fim, utilizou-se o modelo proposto para previsão da demanda de imóveis entre julho de 2016 a dezembro de 2017. Os resultados foram ao encontro de estimativas de especialistas da área, constatando que em 2017 o mercado imobiliário vai se recuperar, entretanto enquanto estes estimam que o mercado cresça 10% em 2017, o modelo revela um crescimento de 19%.Universidade Federal de Santa MariaBrasilEngenharia de ProduçãoUFSMPrograma de Pós-Graduação em Engenharia de ProduçãoCentro de TecnologiaWeise, Andreas Dittmarhttp://lattes.cnpq.br/1329623071793399Braghirolli, Lynceo Falavignahttp://lattes.cnpq.br/2992623886366532Bornia, Antonio Cezarhttp://lattes.cnpq.br/1042018203108549Moro, Matheus Fernando2019-09-18T17:56:33Z2019-09-18T17:56:33Z2017-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/18271ark:/26339/001300000cd06porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-09-19T06:01:15Zoai:repositorio.ufsm.br:1/18271Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2019-09-19T06:01:15Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo
Hybrid model of time series for forecasting demand of the real estate market of São Paulo
title Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo
spellingShingle Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo
Moro, Matheus Fernando
Previsão de demanda
Mercado imobiliário
Combinação de previsões
Demand forecast
Real estate market
Combination of forecasts
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
title_short Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo
title_full Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo
title_fullStr Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo
title_full_unstemmed Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo
title_sort Modelo híbrido de séries temporais para previsão de demanda do mercado imobiliário de São Paulo
author Moro, Matheus Fernando
author_facet Moro, Matheus Fernando
author_role author
dc.contributor.none.fl_str_mv Weise, Andreas Dittmar
http://lattes.cnpq.br/1329623071793399
Braghirolli, Lynceo Falavigna
http://lattes.cnpq.br/2992623886366532
Bornia, Antonio Cezar
http://lattes.cnpq.br/1042018203108549
dc.contributor.author.fl_str_mv Moro, Matheus Fernando
dc.subject.por.fl_str_mv Previsão de demanda
Mercado imobiliário
Combinação de previsões
Demand forecast
Real estate market
Combination of forecasts
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
topic Previsão de demanda
Mercado imobiliário
Combinação de previsões
Demand forecast
Real estate market
Combination of forecasts
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
description One of the biggest problems associated with the use of demand forecasts at the support the decision-making is the choice of forecasting method to be implemented. In the context, present a behavior different from other sectors, the real estate market has difficulty in finding correct methods to predict its demand, indeed, due to the significant time interval between the project decision making, investment, and the actual entry of the enterprise in the market dispute. This complexity leads to the choice of wrong methods, resulting in large inventories of residential units, generating high costs for builders and incorporators, as it has since 2014 in São Paulo, the most representative real estate market of Brazil. Therefore, this research aims to propose a hybrid model of time series for forecasting demand of real estate in the city of São Paulo. For this, will be used data referring to the time series of residential units sales, provided by SECOVI-SP. At first, the Exponential Smoothing, Box-Jenkins, Conditional Heteroskedasticity and Artificial Neural Networks models are modeled individually, posteriorly these are combined by means of six forecast combining techniques. The techniques used are Arithmetic Mean, Geometric Mean, Harmonic Mean, Minimum Variance, Linear Regression and Principal Component Analysis. The measures of accuracy to measure the obtained results and to select the best model are the RMSE, MAPE, MAE and UTheil of forecast. The results showed that the Linear Regression with independent variable being the combination of the SARIMA(2,0,0) (2,0,0)12 and MLP/RNA(18,25,1) models through Principal Component Analysis provided a performance satisfactory prediction, with RMSE of 349.21, MAPE of 17.1%, MAE of 287.62 and UTheil of 0.298. Thus, demonstrating that the combination and hybridization of time series models allowed a significant increase in prediction performance. Finally, we used the proposed model to forecast the demand of real estate between July 2016 and December 2017. The results were in agreement with estimates of specialists in the area, stating that in 2017 the real estate market will recover, however while these estimate that the market grows 10% in 2017, the model shows a growth of 19%.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-15
2019-09-18T17:56:33Z
2019-09-18T17:56:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/18271
dc.identifier.dark.fl_str_mv ark:/26339/001300000cd06
url http://repositorio.ufsm.br/handle/1/18271
identifier_str_mv ark:/26339/001300000cd06
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia de Produção
UFSM
Programa de Pós-Graduação em Engenharia de Produção
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia de Produção
UFSM
Programa de Pós-Graduação em Engenharia de Produção
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172324777787392