Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/00130000169vq |
Texto Completo: | http://repositorio.ufsm.br/handle/1/20728 |
Resumo: | This study aims to identify the limits and possibilities of the curricular components in Teaching Practice (TP), evidenced in the development of the necessary knowledge to the teacher who teaches Mathematics, more precisely in the area of geometry, considering a group of teachers in initial formation, attached to the Degree in Mathematics course at the Federal Institute of Education, Science and Technology of Farroupilha – Santa Rosa Campus – RS. In order to do so, Mishra and Koehler (2006) are adopted as theoretical references, who describe the technological and pedagogical knowledge of the content and its importance in teacher formation. We also adopt the ideas of Ball and his collaborators (2005, 2007, 2008) who present the knowledge of the teacher who teaches Mathematics categorized in: a) content knowledge: common and specialized; b) knowledge horizon; c) pedagogical knowledge of content, of the student and of teaching; d) knowledge of content and curriculum. As regards learning in geometry, we consider Duval’s perspective for the records of semiotic representation (2003, 2011, 2012) to identify the apprehensions mobilized by teachers in initial training. In data production, we analyzed some materials elaborated during the TP III component, in 2017, as well as protocols of a didactic sequence developed in the first semester of 2018 in the TP V component, with activities about the area of a circle, which involved manipulative and digital didactic resources. The research is of a qualitative nature (LÜDKE and ANDRÉ, 1986) and in order to produce the results, Bardin’s principles of content analysis (2016) were used, which is organized in chronological poles: pre-analysis; material exploitation; and the treatment of results, inference and interpretation. Among the results, there is evidence of common and specialized knowledge of the content in every TP III material of all groups. While in the materials from TP III it was not possible to identify knowledge of the content and curriculum as well as knowledge horizon, it was verified, in the didactic sequence, evidence of these two knowledges. Concerning apprehensions, in both material analysis and didactic sequence, perceptive apprehension is the most mobilized by teachers in initial training. In contrast, discursive apprehension has rarely been identified. |
id |
UFSM_bdb65425d3f1c1b66010d63b6686678e |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/20728 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemáticaKnowledge of geometry teaching in practices as a curricular component in a mathematics degree courseFuturo professor de matemáticaPrática como componente curricularConhecimentos docentesEnsino de geometriaInitial formation of mathematics teachersPractice as a curricular componentTeaching knowledgeGeometry teachingAprehensionsCNPQ::CIENCIAS HUMANAS::EDUCACAOThis study aims to identify the limits and possibilities of the curricular components in Teaching Practice (TP), evidenced in the development of the necessary knowledge to the teacher who teaches Mathematics, more precisely in the area of geometry, considering a group of teachers in initial formation, attached to the Degree in Mathematics course at the Federal Institute of Education, Science and Technology of Farroupilha – Santa Rosa Campus – RS. In order to do so, Mishra and Koehler (2006) are adopted as theoretical references, who describe the technological and pedagogical knowledge of the content and its importance in teacher formation. We also adopt the ideas of Ball and his collaborators (2005, 2007, 2008) who present the knowledge of the teacher who teaches Mathematics categorized in: a) content knowledge: common and specialized; b) knowledge horizon; c) pedagogical knowledge of content, of the student and of teaching; d) knowledge of content and curriculum. As regards learning in geometry, we consider Duval’s perspective for the records of semiotic representation (2003, 2011, 2012) to identify the apprehensions mobilized by teachers in initial training. In data production, we analyzed some materials elaborated during the TP III component, in 2017, as well as protocols of a didactic sequence developed in the first semester of 2018 in the TP V component, with activities about the area of a circle, which involved manipulative and digital didactic resources. The research is of a qualitative nature (LÜDKE and ANDRÉ, 1986) and in order to produce the results, Bardin’s principles of content analysis (2016) were used, which is organized in chronological poles: pre-analysis; material exploitation; and the treatment of results, inference and interpretation. Among the results, there is evidence of common and specialized knowledge of the content in every TP III material of all groups. While in the materials from TP III it was not possible to identify knowledge of the content and curriculum as well as knowledge horizon, it was verified, in the didactic sequence, evidence of these two knowledges. Concerning apprehensions, in both material analysis and didactic sequence, perceptive apprehension is the most mobilized by teachers in initial training. In contrast, discursive apprehension has rarely been identified.Este estudo objetiva identificar limites e possibilidades de componentes curriculares Prática de Ensino, evidenciados no desenvolvimento de conhecimentos necessários ao professor que ensina Matemática, em particular, no campo da geometria, considerando um grupo de professores em formação inicial, vinculados ao Curso de Licenciatura em Matemática do Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus Santa Rosa/RS. Para tanto, adota-se, como referencial teórico, Mishra e Koehler (2006), que descrevem o conhecimento tecnológico e pedagógico do conteúdo e sua importância na formação do professor. Além disso, tomam-se as ideias de Ball e seus colaboradores (2005, 2007, 2008) que apresentam os conhecimentos do professor que ensina Matemática categorizados em: a) conhecimento do conteúdo: comum e especializado; b) horizonte do conhecimento; c) conhecimento pedagógico do conteúdo e do estudante/e do ensino; d) conhecimento do conteúdo e do currículo. No que tange a aprendizagem em geometria, considera-se a ótica dos registros de representação semiótica de Duval (2003, 2011, 2012) para identificar as apreensões mobilizadas pelos professores em formação inicial. Na produção de dados, foram analisados alguns materiais elaborados durante o componente Prática de Ensino III, no ano de 2017, bem como protocolos de uma sequência didática desenvolvida no primeiro semestre de 2018 no componente Prática de Ensino V, com atividades sobre área do círculo, que envolveram recursos didáticos manipuláveis e digitais. A pesquisa é de caráter qualitativo, de acordo com Lüdke e André, (1986) e para tecer os resultados, utilizam-se princípios da análise de conteúdo de Bardin (2016), que se organiza em polos cronológicos: pré-análise; exploração do material; e o tratamento dos resultados, inferência e interpretação. Dentre os resultados observam-se indícios dos conhecimentos comum e especializado do conteúdo em todos os materiais da PE III de todos os grupos. Enquanto que, nos materiais da PE III, não foi possível identificar conhecimentos do conteúdo e currículo, bem como, horizonte do conhecimento, constatou-se, na sequência didática, evidências desses dois conhecimentos. No que diz respeito às apreensões, tanto na análise dos materiais, quanto na sequência didática, a apreensão perceptiva é a mais mobilizada pelos professores em formação inicial. Em contrapartida, raramente a apreensão discursiva foi identificada.Universidade Federal de Santa MariaBrasilEducaçãoUFSMPrograma de Pós-Graduação em Educação Matemática e Ensino de FísicaCentro de Ciências Naturais e ExatasMariani, Rita de Cássia Pistóiahttp://lattes.cnpq.br/8330933788557081Lopes, Anemari R.L. VieiraPreussler, RobertoMumbach, Morgani2021-04-29T17:45:13Z2021-04-29T17:45:13Z2018-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/20728ark:/26339/00130000169vqporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-07-05T12:56:10Zoai:repositorio.ufsm.br:1/20728Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-07-05T12:56:10Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática Knowledge of geometry teaching in practices as a curricular component in a mathematics degree course |
title |
Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática |
spellingShingle |
Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática Mumbach, Morgani Futuro professor de matemática Prática como componente curricular Conhecimentos docentes Ensino de geometria Initial formation of mathematics teachers Practice as a curricular component Teaching knowledge Geometry teaching Aprehensions CNPQ::CIENCIAS HUMANAS::EDUCACAO |
title_short |
Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática |
title_full |
Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática |
title_fullStr |
Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática |
title_full_unstemmed |
Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática |
title_sort |
Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática |
author |
Mumbach, Morgani |
author_facet |
Mumbach, Morgani |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mariani, Rita de Cássia Pistóia http://lattes.cnpq.br/8330933788557081 Lopes, Anemari R.L. Vieira Preussler, Roberto |
dc.contributor.author.fl_str_mv |
Mumbach, Morgani |
dc.subject.por.fl_str_mv |
Futuro professor de matemática Prática como componente curricular Conhecimentos docentes Ensino de geometria Initial formation of mathematics teachers Practice as a curricular component Teaching knowledge Geometry teaching Aprehensions CNPQ::CIENCIAS HUMANAS::EDUCACAO |
topic |
Futuro professor de matemática Prática como componente curricular Conhecimentos docentes Ensino de geometria Initial formation of mathematics teachers Practice as a curricular component Teaching knowledge Geometry teaching Aprehensions CNPQ::CIENCIAS HUMANAS::EDUCACAO |
description |
This study aims to identify the limits and possibilities of the curricular components in Teaching Practice (TP), evidenced in the development of the necessary knowledge to the teacher who teaches Mathematics, more precisely in the area of geometry, considering a group of teachers in initial formation, attached to the Degree in Mathematics course at the Federal Institute of Education, Science and Technology of Farroupilha – Santa Rosa Campus – RS. In order to do so, Mishra and Koehler (2006) are adopted as theoretical references, who describe the technological and pedagogical knowledge of the content and its importance in teacher formation. We also adopt the ideas of Ball and his collaborators (2005, 2007, 2008) who present the knowledge of the teacher who teaches Mathematics categorized in: a) content knowledge: common and specialized; b) knowledge horizon; c) pedagogical knowledge of content, of the student and of teaching; d) knowledge of content and curriculum. As regards learning in geometry, we consider Duval’s perspective for the records of semiotic representation (2003, 2011, 2012) to identify the apprehensions mobilized by teachers in initial training. In data production, we analyzed some materials elaborated during the TP III component, in 2017, as well as protocols of a didactic sequence developed in the first semester of 2018 in the TP V component, with activities about the area of a circle, which involved manipulative and digital didactic resources. The research is of a qualitative nature (LÜDKE and ANDRÉ, 1986) and in order to produce the results, Bardin’s principles of content analysis (2016) were used, which is organized in chronological poles: pre-analysis; material exploitation; and the treatment of results, inference and interpretation. Among the results, there is evidence of common and specialized knowledge of the content in every TP III material of all groups. While in the materials from TP III it was not possible to identify knowledge of the content and curriculum as well as knowledge horizon, it was verified, in the didactic sequence, evidence of these two knowledges. Concerning apprehensions, in both material analysis and didactic sequence, perceptive apprehension is the most mobilized by teachers in initial training. In contrast, discursive apprehension has rarely been identified. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-31 2021-04-29T17:45:13Z 2021-04-29T17:45:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/20728 |
dc.identifier.dark.fl_str_mv |
ark:/26339/00130000169vq |
url |
http://repositorio.ufsm.br/handle/1/20728 |
identifier_str_mv |
ark:/26339/00130000169vq |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Educação UFSM Programa de Pós-Graduação em Educação Matemática e Ensino de Física Centro de Ciências Naturais e Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Educação UFSM Programa de Pós-Graduação em Educação Matemática e Ensino de Física Centro de Ciências Naturais e Exatas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172458022436864 |