Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática

Detalhes bibliográficos
Autor(a) principal: Mumbach, Morgani
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/00130000169vq
Texto Completo: http://repositorio.ufsm.br/handle/1/20728
Resumo: This study aims to identify the limits and possibilities of the curricular components in Teaching Practice (TP), evidenced in the development of the necessary knowledge to the teacher who teaches Mathematics, more precisely in the area of geometry, considering a group of teachers in initial formation, attached to the Degree in Mathematics course at the Federal Institute of Education, Science and Technology of Farroupilha – Santa Rosa Campus – RS. In order to do so, Mishra and Koehler (2006) are adopted as theoretical references, who describe the technological and pedagogical knowledge of the content and its importance in teacher formation. We also adopt the ideas of Ball and his collaborators (2005, 2007, 2008) who present the knowledge of the teacher who teaches Mathematics categorized in: a) content knowledge: common and specialized; b) knowledge horizon; c) pedagogical knowledge of content, of the student and of teaching; d) knowledge of content and curriculum. As regards learning in geometry, we consider Duval’s perspective for the records of semiotic representation (2003, 2011, 2012) to identify the apprehensions mobilized by teachers in initial training. In data production, we analyzed some materials elaborated during the TP III component, in 2017, as well as protocols of a didactic sequence developed in the first semester of 2018 in the TP V component, with activities about the area of a circle, which involved manipulative and digital didactic resources. The research is of a qualitative nature (LÜDKE and ANDRÉ, 1986) and in order to produce the results, Bardin’s principles of content analysis (2016) were used, which is organized in chronological poles: pre-analysis; material exploitation; and the treatment of results, inference and interpretation. Among the results, there is evidence of common and specialized knowledge of the content in every TP III material of all groups. While in the materials from TP III it was not possible to identify knowledge of the content and curriculum as well as knowledge horizon, it was verified, in the didactic sequence, evidence of these two knowledges. Concerning apprehensions, in both material analysis and didactic sequence, perceptive apprehension is the most mobilized by teachers in initial training. In contrast, discursive apprehension has rarely been identified.
id UFSM_bdb65425d3f1c1b66010d63b6686678e
oai_identifier_str oai:repositorio.ufsm.br:1/20728
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemáticaKnowledge of geometry teaching in practices as a curricular component in a mathematics degree courseFuturo professor de matemáticaPrática como componente curricularConhecimentos docentesEnsino de geometriaInitial formation of mathematics teachersPractice as a curricular componentTeaching knowledgeGeometry teachingAprehensionsCNPQ::CIENCIAS HUMANAS::EDUCACAOThis study aims to identify the limits and possibilities of the curricular components in Teaching Practice (TP), evidenced in the development of the necessary knowledge to the teacher who teaches Mathematics, more precisely in the area of geometry, considering a group of teachers in initial formation, attached to the Degree in Mathematics course at the Federal Institute of Education, Science and Technology of Farroupilha – Santa Rosa Campus – RS. In order to do so, Mishra and Koehler (2006) are adopted as theoretical references, who describe the technological and pedagogical knowledge of the content and its importance in teacher formation. We also adopt the ideas of Ball and his collaborators (2005, 2007, 2008) who present the knowledge of the teacher who teaches Mathematics categorized in: a) content knowledge: common and specialized; b) knowledge horizon; c) pedagogical knowledge of content, of the student and of teaching; d) knowledge of content and curriculum. As regards learning in geometry, we consider Duval’s perspective for the records of semiotic representation (2003, 2011, 2012) to identify the apprehensions mobilized by teachers in initial training. In data production, we analyzed some materials elaborated during the TP III component, in 2017, as well as protocols of a didactic sequence developed in the first semester of 2018 in the TP V component, with activities about the area of a circle, which involved manipulative and digital didactic resources. The research is of a qualitative nature (LÜDKE and ANDRÉ, 1986) and in order to produce the results, Bardin’s principles of content analysis (2016) were used, which is organized in chronological poles: pre-analysis; material exploitation; and the treatment of results, inference and interpretation. Among the results, there is evidence of common and specialized knowledge of the content in every TP III material of all groups. While in the materials from TP III it was not possible to identify knowledge of the content and curriculum as well as knowledge horizon, it was verified, in the didactic sequence, evidence of these two knowledges. Concerning apprehensions, in both material analysis and didactic sequence, perceptive apprehension is the most mobilized by teachers in initial training. In contrast, discursive apprehension has rarely been identified.Este estudo objetiva identificar limites e possibilidades de componentes curriculares Prática de Ensino, evidenciados no desenvolvimento de conhecimentos necessários ao professor que ensina Matemática, em particular, no campo da geometria, considerando um grupo de professores em formação inicial, vinculados ao Curso de Licenciatura em Matemática do Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus Santa Rosa/RS. Para tanto, adota-se, como referencial teórico, Mishra e Koehler (2006), que descrevem o conhecimento tecnológico e pedagógico do conteúdo e sua importância na formação do professor. Além disso, tomam-se as ideias de Ball e seus colaboradores (2005, 2007, 2008) que apresentam os conhecimentos do professor que ensina Matemática categorizados em: a) conhecimento do conteúdo: comum e especializado; b) horizonte do conhecimento; c) conhecimento pedagógico do conteúdo e do estudante/e do ensino; d) conhecimento do conteúdo e do currículo. No que tange a aprendizagem em geometria, considera-se a ótica dos registros de representação semiótica de Duval (2003, 2011, 2012) para identificar as apreensões mobilizadas pelos professores em formação inicial. Na produção de dados, foram analisados alguns materiais elaborados durante o componente Prática de Ensino III, no ano de 2017, bem como protocolos de uma sequência didática desenvolvida no primeiro semestre de 2018 no componente Prática de Ensino V, com atividades sobre área do círculo, que envolveram recursos didáticos manipuláveis e digitais. A pesquisa é de caráter qualitativo, de acordo com Lüdke e André, (1986) e para tecer os resultados, utilizam-se princípios da análise de conteúdo de Bardin (2016), que se organiza em polos cronológicos: pré-análise; exploração do material; e o tratamento dos resultados, inferência e interpretação. Dentre os resultados observam-se indícios dos conhecimentos comum e especializado do conteúdo em todos os materiais da PE III de todos os grupos. Enquanto que, nos materiais da PE III, não foi possível identificar conhecimentos do conteúdo e currículo, bem como, horizonte do conhecimento, constatou-se, na sequência didática, evidências desses dois conhecimentos. No que diz respeito às apreensões, tanto na análise dos materiais, quanto na sequência didática, a apreensão perceptiva é a mais mobilizada pelos professores em formação inicial. Em contrapartida, raramente a apreensão discursiva foi identificada.Universidade Federal de Santa MariaBrasilEducaçãoUFSMPrograma de Pós-Graduação em Educação Matemática e Ensino de FísicaCentro de Ciências Naturais e ExatasMariani, Rita de Cássia Pistóiahttp://lattes.cnpq.br/8330933788557081Lopes, Anemari R.L. VieiraPreussler, RobertoMumbach, Morgani2021-04-29T17:45:13Z2021-04-29T17:45:13Z2018-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/20728ark:/26339/00130000169vqporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-07-05T12:56:10Zoai:repositorio.ufsm.br:1/20728Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-07-05T12:56:10Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática
Knowledge of geometry teaching in practices as a curricular component in a mathematics degree course
title Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática
spellingShingle Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática
Mumbach, Morgani
Futuro professor de matemática
Prática como componente curricular
Conhecimentos docentes
Ensino de geometria
Initial formation of mathematics teachers
Practice as a curricular component
Teaching knowledge
Geometry teaching
Aprehensions
CNPQ::CIENCIAS HUMANAS::EDUCACAO
title_short Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática
title_full Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática
title_fullStr Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática
title_full_unstemmed Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática
title_sort Conhecimentos sobre ensino de geometria em práticas componente curricular em um curso de licenciatura matemática
author Mumbach, Morgani
author_facet Mumbach, Morgani
author_role author
dc.contributor.none.fl_str_mv Mariani, Rita de Cássia Pistóia
http://lattes.cnpq.br/8330933788557081
Lopes, Anemari R.L. Vieira
Preussler, Roberto
dc.contributor.author.fl_str_mv Mumbach, Morgani
dc.subject.por.fl_str_mv Futuro professor de matemática
Prática como componente curricular
Conhecimentos docentes
Ensino de geometria
Initial formation of mathematics teachers
Practice as a curricular component
Teaching knowledge
Geometry teaching
Aprehensions
CNPQ::CIENCIAS HUMANAS::EDUCACAO
topic Futuro professor de matemática
Prática como componente curricular
Conhecimentos docentes
Ensino de geometria
Initial formation of mathematics teachers
Practice as a curricular component
Teaching knowledge
Geometry teaching
Aprehensions
CNPQ::CIENCIAS HUMANAS::EDUCACAO
description This study aims to identify the limits and possibilities of the curricular components in Teaching Practice (TP), evidenced in the development of the necessary knowledge to the teacher who teaches Mathematics, more precisely in the area of geometry, considering a group of teachers in initial formation, attached to the Degree in Mathematics course at the Federal Institute of Education, Science and Technology of Farroupilha – Santa Rosa Campus – RS. In order to do so, Mishra and Koehler (2006) are adopted as theoretical references, who describe the technological and pedagogical knowledge of the content and its importance in teacher formation. We also adopt the ideas of Ball and his collaborators (2005, 2007, 2008) who present the knowledge of the teacher who teaches Mathematics categorized in: a) content knowledge: common and specialized; b) knowledge horizon; c) pedagogical knowledge of content, of the student and of teaching; d) knowledge of content and curriculum. As regards learning in geometry, we consider Duval’s perspective for the records of semiotic representation (2003, 2011, 2012) to identify the apprehensions mobilized by teachers in initial training. In data production, we analyzed some materials elaborated during the TP III component, in 2017, as well as protocols of a didactic sequence developed in the first semester of 2018 in the TP V component, with activities about the area of a circle, which involved manipulative and digital didactic resources. The research is of a qualitative nature (LÜDKE and ANDRÉ, 1986) and in order to produce the results, Bardin’s principles of content analysis (2016) were used, which is organized in chronological poles: pre-analysis; material exploitation; and the treatment of results, inference and interpretation. Among the results, there is evidence of common and specialized knowledge of the content in every TP III material of all groups. While in the materials from TP III it was not possible to identify knowledge of the content and curriculum as well as knowledge horizon, it was verified, in the didactic sequence, evidence of these two knowledges. Concerning apprehensions, in both material analysis and didactic sequence, perceptive apprehension is the most mobilized by teachers in initial training. In contrast, discursive apprehension has rarely been identified.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-31
2021-04-29T17:45:13Z
2021-04-29T17:45:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/20728
dc.identifier.dark.fl_str_mv ark:/26339/00130000169vq
url http://repositorio.ufsm.br/handle/1/20728
identifier_str_mv ark:/26339/00130000169vq
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Educação
UFSM
Programa de Pós-Graduação em Educação Matemática e Ensino de Física
Centro de Ciências Naturais e Exatas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Educação
UFSM
Programa de Pós-Graduação em Educação Matemática e Ensino de Física
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172458022436864