Human adipose-derived stem cells stimulate neuroregeneration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1007/s10238-015-0364-3 http://www.locus.ufv.br/handle/123456789/19341 |
Resumo: | Traumatic brain injuries and degenerative neurological disorders such as Alzheimer’s dementia, Parkinson’s disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves. |
id |
UFV_00fe58247eb82fd4c87fb888505b6958 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/19341 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Lima, Luciana M.Masgutov, Ruslan F.Masgutova, Galina A.Zhuravleva, Margarita N.Salafutdinov, Ilnur I.Mukhametshina, Regina T.Mukhamedshina, Yana O.Reis, Helton J.Kiyasov, Andrey P.Palotás, AndrásRizvanov, Albert A.2018-05-07T10:38:18Z2018-05-07T10:38:18Z2005-06-061591-9528http://dx.doi.org/10.1007/s10238-015-0364-3http://www.locus.ufv.br/handle/123456789/19341Traumatic brain injuries and degenerative neurological disorders such as Alzheimer’s dementia, Parkinson’s disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves.engClinical and Experimental MedicineVolume 16, Issue 3, pp 451–461, August 2016Springer International Publishing AGinfo:eu-repo/semantics/openAccessAutonerve graftHuman adipose-derived stem cell (hADSC)XenotransplantationPeripheral nerve injuryRegenerative medicineRepairHuman adipose-derived stem cells stimulate neuroregenerationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1925650https://locus.ufv.br//bitstream/123456789/19341/1/artigo.pdf14c9377c12b26ff95e3fee6a8b575611MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/19341/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5156https://locus.ufv.br//bitstream/123456789/19341/3/artigo.pdf.jpg0129ed87e903e25844793de72db9fd73MD53123456789/193412018-05-07 23:00:34.132oai:locus.ufv.br:123456789/19341Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-05-08T02:00:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Human adipose-derived stem cells stimulate neuroregeneration |
title |
Human adipose-derived stem cells stimulate neuroregeneration |
spellingShingle |
Human adipose-derived stem cells stimulate neuroregeneration Lima, Luciana M. Autonerve graft Human adipose-derived stem cell (hADSC) Xenotransplantation Peripheral nerve injury Regenerative medicine Repair |
title_short |
Human adipose-derived stem cells stimulate neuroregeneration |
title_full |
Human adipose-derived stem cells stimulate neuroregeneration |
title_fullStr |
Human adipose-derived stem cells stimulate neuroregeneration |
title_full_unstemmed |
Human adipose-derived stem cells stimulate neuroregeneration |
title_sort |
Human adipose-derived stem cells stimulate neuroregeneration |
author |
Lima, Luciana M. |
author_facet |
Lima, Luciana M. Masgutov, Ruslan F. Masgutova, Galina A. Zhuravleva, Margarita N. Salafutdinov, Ilnur I. Mukhametshina, Regina T. Mukhamedshina, Yana O. Reis, Helton J. Kiyasov, Andrey P. Palotás, András Rizvanov, Albert A. |
author_role |
author |
author2 |
Masgutov, Ruslan F. Masgutova, Galina A. Zhuravleva, Margarita N. Salafutdinov, Ilnur I. Mukhametshina, Regina T. Mukhamedshina, Yana O. Reis, Helton J. Kiyasov, Andrey P. Palotás, András Rizvanov, Albert A. |
author2_role |
author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Lima, Luciana M. Masgutov, Ruslan F. Masgutova, Galina A. Zhuravleva, Margarita N. Salafutdinov, Ilnur I. Mukhametshina, Regina T. Mukhamedshina, Yana O. Reis, Helton J. Kiyasov, Andrey P. Palotás, András Rizvanov, Albert A. |
dc.subject.pt-BR.fl_str_mv |
Autonerve graft Human adipose-derived stem cell (hADSC) Xenotransplantation Peripheral nerve injury Regenerative medicine Repair |
topic |
Autonerve graft Human adipose-derived stem cell (hADSC) Xenotransplantation Peripheral nerve injury Regenerative medicine Repair |
description |
Traumatic brain injuries and degenerative neurological disorders such as Alzheimer’s dementia, Parkinson’s disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves. |
publishDate |
2005 |
dc.date.issued.fl_str_mv |
2005-06-06 |
dc.date.accessioned.fl_str_mv |
2018-05-07T10:38:18Z |
dc.date.available.fl_str_mv |
2018-05-07T10:38:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s10238-015-0364-3 http://www.locus.ufv.br/handle/123456789/19341 |
dc.identifier.issn.none.fl_str_mv |
1591-9528 |
identifier_str_mv |
1591-9528 |
url |
http://dx.doi.org/10.1007/s10238-015-0364-3 http://www.locus.ufv.br/handle/123456789/19341 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Volume 16, Issue 3, pp 451–461, August 2016 |
dc.rights.driver.fl_str_mv |
Springer International Publishing AG info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Springer International Publishing AG |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Clinical and Experimental Medicine |
publisher.none.fl_str_mv |
Clinical and Experimental Medicine |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/19341/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/19341/2/license.txt https://locus.ufv.br//bitstream/123456789/19341/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
14c9377c12b26ff95e3fee6a8b575611 8a4605be74aa9ea9d79846c1fba20a33 0129ed87e903e25844793de72db9fd73 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212882670583808 |