Human adipose-derived stem cells stimulate neuroregeneration

Detalhes bibliográficos
Autor(a) principal: Lima, Luciana M.
Data de Publicação: 2005
Outros Autores: Masgutov, Ruslan F., Masgutova, Galina A., Zhuravleva, Margarita N., Salafutdinov, Ilnur I., Mukhametshina, Regina T., Mukhamedshina, Yana O., Reis, Helton J., Kiyasov, Andrey P., Palotás, András, Rizvanov, Albert A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1007/s10238-015-0364-3
http://www.locus.ufv.br/handle/123456789/19341
Resumo: Traumatic brain injuries and degenerative neurological disorders such as Alzheimer’s dementia, Parkinson’s disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves.
id UFV_00fe58247eb82fd4c87fb888505b6958
oai_identifier_str oai:locus.ufv.br:123456789/19341
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Lima, Luciana M.Masgutov, Ruslan F.Masgutova, Galina A.Zhuravleva, Margarita N.Salafutdinov, Ilnur I.Mukhametshina, Regina T.Mukhamedshina, Yana O.Reis, Helton J.Kiyasov, Andrey P.Palotás, AndrásRizvanov, Albert A.2018-05-07T10:38:18Z2018-05-07T10:38:18Z2005-06-061591-9528http://dx.doi.org/10.1007/s10238-015-0364-3http://www.locus.ufv.br/handle/123456789/19341Traumatic brain injuries and degenerative neurological disorders such as Alzheimer’s dementia, Parkinson’s disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves.engClinical and Experimental MedicineVolume 16, Issue 3, pp 451–461, August 2016Springer International Publishing AGinfo:eu-repo/semantics/openAccessAutonerve graftHuman adipose-derived stem cell (hADSC)XenotransplantationPeripheral nerve injuryRegenerative medicineRepairHuman adipose-derived stem cells stimulate neuroregenerationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1925650https://locus.ufv.br//bitstream/123456789/19341/1/artigo.pdf14c9377c12b26ff95e3fee6a8b575611MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/19341/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5156https://locus.ufv.br//bitstream/123456789/19341/3/artigo.pdf.jpg0129ed87e903e25844793de72db9fd73MD53123456789/193412018-05-07 23:00:34.132oai:locus.ufv.br:123456789/19341Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-05-08T02:00:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Human adipose-derived stem cells stimulate neuroregeneration
title Human adipose-derived stem cells stimulate neuroregeneration
spellingShingle Human adipose-derived stem cells stimulate neuroregeneration
Lima, Luciana M.
Autonerve graft
Human adipose-derived stem cell (hADSC)
Xenotransplantation
Peripheral nerve injury
Regenerative medicine
Repair
title_short Human adipose-derived stem cells stimulate neuroregeneration
title_full Human adipose-derived stem cells stimulate neuroregeneration
title_fullStr Human adipose-derived stem cells stimulate neuroregeneration
title_full_unstemmed Human adipose-derived stem cells stimulate neuroregeneration
title_sort Human adipose-derived stem cells stimulate neuroregeneration
author Lima, Luciana M.
author_facet Lima, Luciana M.
Masgutov, Ruslan F.
Masgutova, Galina A.
Zhuravleva, Margarita N.
Salafutdinov, Ilnur I.
Mukhametshina, Regina T.
Mukhamedshina, Yana O.
Reis, Helton J.
Kiyasov, Andrey P.
Palotás, András
Rizvanov, Albert A.
author_role author
author2 Masgutov, Ruslan F.
Masgutova, Galina A.
Zhuravleva, Margarita N.
Salafutdinov, Ilnur I.
Mukhametshina, Regina T.
Mukhamedshina, Yana O.
Reis, Helton J.
Kiyasov, Andrey P.
Palotás, András
Rizvanov, Albert A.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Lima, Luciana M.
Masgutov, Ruslan F.
Masgutova, Galina A.
Zhuravleva, Margarita N.
Salafutdinov, Ilnur I.
Mukhametshina, Regina T.
Mukhamedshina, Yana O.
Reis, Helton J.
Kiyasov, Andrey P.
Palotás, András
Rizvanov, Albert A.
dc.subject.pt-BR.fl_str_mv Autonerve graft
Human adipose-derived stem cell (hADSC)
Xenotransplantation
Peripheral nerve injury
Regenerative medicine
Repair
topic Autonerve graft
Human adipose-derived stem cell (hADSC)
Xenotransplantation
Peripheral nerve injury
Regenerative medicine
Repair
description Traumatic brain injuries and degenerative neurological disorders such as Alzheimer’s dementia, Parkinson’s disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves.
publishDate 2005
dc.date.issued.fl_str_mv 2005-06-06
dc.date.accessioned.fl_str_mv 2018-05-07T10:38:18Z
dc.date.available.fl_str_mv 2018-05-07T10:38:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10238-015-0364-3
http://www.locus.ufv.br/handle/123456789/19341
dc.identifier.issn.none.fl_str_mv 1591-9528
identifier_str_mv 1591-9528
url http://dx.doi.org/10.1007/s10238-015-0364-3
http://www.locus.ufv.br/handle/123456789/19341
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 16, Issue 3, pp 451–461, August 2016
dc.rights.driver.fl_str_mv Springer International Publishing AG
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Springer International Publishing AG
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Clinical and Experimental Medicine
publisher.none.fl_str_mv Clinical and Experimental Medicine
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/19341/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/19341/2/license.txt
https://locus.ufv.br//bitstream/123456789/19341/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 14c9377c12b26ff95e3fee6a8b575611
8a4605be74aa9ea9d79846c1fba20a33
0129ed87e903e25844793de72db9fd73
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212882670583808