Módulos de Weyl e de Demazure para álgebras de Lie de correntes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://locus.ufv.br//handle/123456789/28010 |
Resumo: | Sejam g uma álgebra de Lie simples de dimensão finita sobre o conjunto dos números complexos e sl r+1 o conjunto das matrizes de ordem (r + 1) × (r + 1) com traço zero. Neste trabalho apresentamos uma famı́lia de módulos integráveis, denotados por W (λ), para a álgebra de Lie afim estendida, com λ um peso dominante inteiro de g e definimos os módulos de Weyl para as álgebras de loop L(g) = g ⊗ C[t, t −1 ], segundo um artigo de Chari e Pressley, como sendo quocientes dos módulos W (λ). Esses módulos de Weyl são de peso máximo, parametrizados por uma r-upla de polinômios π, com r denotando o posto de g. Além disso, provamos algumas propriedades universais dos módulos W (λ) e W (π). Outro objeto de nosso estudo foi a famı́lia dos módulos de Demazure, os quais definimos sobre a álgebra de correntes g[t], quando g = sl r+1 , e provamos que, em representações integráveis de peso máximo da álgebra de Lie afim associada a g, eles são quocientes dos módulos de Weyl. A partir da noção de módulos de fusão, segundo um artigo de Chari e Loktev, apresentamos uma relação entre os módulos de Weyl, os módulos de fusão da álgebra de correntes g[t], quando g = sl r+1 , e os módulos de Demazure da correspondente álgebra de Lie afim. Além disso, como uma consequência da relação anterior, apresenta- mos um caso especial de uma conjectura de Chari e Loktev sobre a estrutura e caracter dos módulos fusão. Palavras-chave: Álgebra de Lie afim. Álgebra de correntes. Módulos de Weyl. Módulos de Demazure. Módulos de fusão. |
id |
UFV_13e1b419f9ba8fb4300cb6eb07faeca1 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/28010 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Zapata Santamaria, Fernando Alejandrohttp://lattes.cnpq.br/3856757928634986Guerreiro, Marinês2021-07-27T13:46:21Z2021-07-27T13:46:21Z2020-03-06ZAPATA SANTAMARIA, Fernando Alejandro. Módulos de Weyl e de Demazure para álgebras de Lie de correntes. 2020. 87 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2020.https://locus.ufv.br//handle/123456789/28010Sejam g uma álgebra de Lie simples de dimensão finita sobre o conjunto dos números complexos e sl r+1 o conjunto das matrizes de ordem (r + 1) × (r + 1) com traço zero. Neste trabalho apresentamos uma famı́lia de módulos integráveis, denotados por W (λ), para a álgebra de Lie afim estendida, com λ um peso dominante inteiro de g e definimos os módulos de Weyl para as álgebras de loop L(g) = g ⊗ C[t, t −1 ], segundo um artigo de Chari e Pressley, como sendo quocientes dos módulos W (λ). Esses módulos de Weyl são de peso máximo, parametrizados por uma r-upla de polinômios π, com r denotando o posto de g. Além disso, provamos algumas propriedades universais dos módulos W (λ) e W (π). Outro objeto de nosso estudo foi a famı́lia dos módulos de Demazure, os quais definimos sobre a álgebra de correntes g[t], quando g = sl r+1 , e provamos que, em representações integráveis de peso máximo da álgebra de Lie afim associada a g, eles são quocientes dos módulos de Weyl. A partir da noção de módulos de fusão, segundo um artigo de Chari e Loktev, apresentamos uma relação entre os módulos de Weyl, os módulos de fusão da álgebra de correntes g[t], quando g = sl r+1 , e os módulos de Demazure da correspondente álgebra de Lie afim. Além disso, como uma consequência da relação anterior, apresenta- mos um caso especial de uma conjectura de Chari e Loktev sobre a estrutura e caracter dos módulos fusão. Palavras-chave: Álgebra de Lie afim. Álgebra de correntes. Módulos de Weyl. Módulos de Demazure. Módulos de fusão.Let g be a simple Lie algebra of finite dimension over the complex numbers and sl r+1 be the Lie algebra of (r + 1) × (r + 1)-matrices of trace zero. In this work we present a family of integrable modules, denoted by W (λ) for the extended affine Lie algebra, with λ an entire dominant weight of g and we define the Weyl modules for the loop algebras L(g) = g ⊗ C[t, t −1 ], according to an article by Chari and Pressley, as quotients of the modules W (λ). These Weyl modules are of maximum weight, parametrized by an r-tuple of polynomials π, with r denoting the rank of g. Besides, we proved some universal pro- perties of the modules W (λ) and W (π). Another object of our study was the family of the Demazure modules, which we define on the current algebra g[t], when g = sl r+1 , and we prove that, in integrable representations of maximum weight of the related Lie algebra associated with g, they are quotients of the Weyl modules. From the notion of fusion mo- dules, according to an article by Chari and Loktev, we present a relation between Weyl modules and the fusion modules of current Lie algebra g[t], for g = sl r+1 , and the Dema- zure modules of the corresponding affine Lie algebra. Furthermore, as a consequence of the previous relation, we establish special cases of a conjecture by Chari and Loktev on the structure and character of the fusion modules. Keywords: Affine Lie algebras. Current Lie algebras. Weyl modules. Demazure modules. Fusion modules.porUniversidade Federal de ViçosaLie, Álgebra deÁlgebra de correntesMódulos (Álgebra)Módulos de fusãoÁlgebraMódulos de Weyl e de Demazure para álgebras de Lie de correntesWeyl and Demazure modules for current Lie algebrasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de MatemáticaMestre em MatemáticaViçosa - MG2020-03-06Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf871591https://locus.ufv.br//bitstream/123456789/28010/1/texto%20completo.pdfe1bf0f46ea7a0de3bdbf951e0d781017MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/28010/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/280102021-08-06 20:18:28.799oai:locus.ufv.br:123456789/28010Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452021-08-06T23:18:28LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.pt-BR.fl_str_mv |
Módulos de Weyl e de Demazure para álgebras de Lie de correntes |
dc.title.en.fl_str_mv |
Weyl and Demazure modules for current Lie algebras |
title |
Módulos de Weyl e de Demazure para álgebras de Lie de correntes |
spellingShingle |
Módulos de Weyl e de Demazure para álgebras de Lie de correntes Zapata Santamaria, Fernando Alejandro Lie, Álgebra de Álgebra de correntes Módulos (Álgebra) Módulos de fusão Álgebra |
title_short |
Módulos de Weyl e de Demazure para álgebras de Lie de correntes |
title_full |
Módulos de Weyl e de Demazure para álgebras de Lie de correntes |
title_fullStr |
Módulos de Weyl e de Demazure para álgebras de Lie de correntes |
title_full_unstemmed |
Módulos de Weyl e de Demazure para álgebras de Lie de correntes |
title_sort |
Módulos de Weyl e de Demazure para álgebras de Lie de correntes |
author |
Zapata Santamaria, Fernando Alejandro |
author_facet |
Zapata Santamaria, Fernando Alejandro |
author_role |
author |
dc.contributor.authorLattes.pt-BR.fl_str_mv |
http://lattes.cnpq.br/3856757928634986 |
dc.contributor.author.fl_str_mv |
Zapata Santamaria, Fernando Alejandro |
dc.contributor.advisor1.fl_str_mv |
Guerreiro, Marinês |
contributor_str_mv |
Guerreiro, Marinês |
dc.subject.pt-BR.fl_str_mv |
Lie, Álgebra de Álgebra de correntes Módulos (Álgebra) Módulos de fusão |
topic |
Lie, Álgebra de Álgebra de correntes Módulos (Álgebra) Módulos de fusão Álgebra |
dc.subject.cnpq.fl_str_mv |
Álgebra |
description |
Sejam g uma álgebra de Lie simples de dimensão finita sobre o conjunto dos números complexos e sl r+1 o conjunto das matrizes de ordem (r + 1) × (r + 1) com traço zero. Neste trabalho apresentamos uma famı́lia de módulos integráveis, denotados por W (λ), para a álgebra de Lie afim estendida, com λ um peso dominante inteiro de g e definimos os módulos de Weyl para as álgebras de loop L(g) = g ⊗ C[t, t −1 ], segundo um artigo de Chari e Pressley, como sendo quocientes dos módulos W (λ). Esses módulos de Weyl são de peso máximo, parametrizados por uma r-upla de polinômios π, com r denotando o posto de g. Além disso, provamos algumas propriedades universais dos módulos W (λ) e W (π). Outro objeto de nosso estudo foi a famı́lia dos módulos de Demazure, os quais definimos sobre a álgebra de correntes g[t], quando g = sl r+1 , e provamos que, em representações integráveis de peso máximo da álgebra de Lie afim associada a g, eles são quocientes dos módulos de Weyl. A partir da noção de módulos de fusão, segundo um artigo de Chari e Loktev, apresentamos uma relação entre os módulos de Weyl, os módulos de fusão da álgebra de correntes g[t], quando g = sl r+1 , e os módulos de Demazure da correspondente álgebra de Lie afim. Além disso, como uma consequência da relação anterior, apresenta- mos um caso especial de uma conjectura de Chari e Loktev sobre a estrutura e caracter dos módulos fusão. Palavras-chave: Álgebra de Lie afim. Álgebra de correntes. Módulos de Weyl. Módulos de Demazure. Módulos de fusão. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-03-06 |
dc.date.accessioned.fl_str_mv |
2021-07-27T13:46:21Z |
dc.date.available.fl_str_mv |
2021-07-27T13:46:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ZAPATA SANTAMARIA, Fernando Alejandro. Módulos de Weyl e de Demazure para álgebras de Lie de correntes. 2020. 87 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2020. |
dc.identifier.uri.fl_str_mv |
https://locus.ufv.br//handle/123456789/28010 |
identifier_str_mv |
ZAPATA SANTAMARIA, Fernando Alejandro. Módulos de Weyl e de Demazure para álgebras de Lie de correntes. 2020. 87 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2020. |
url |
https://locus.ufv.br//handle/123456789/28010 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/28010/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/28010/2/license.txt |
bitstream.checksum.fl_str_mv |
e1bf0f46ea7a0de3bdbf951e0d781017 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213041591713792 |