On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry

Detalhes bibliográficos
Autor(a) principal: Carvalho-Santos, V.L.
Data de Publicação: 2013
Outros Autores: Apolonio, F.A., Oliveira-Neto, N.M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.physleta.2013.03.028
http://www.locus.ufv.br/handle/123456789/21545
Resumo: We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry.
id UFV_38d639c782486b8c54db273a9a6c4403
oai_identifier_str oai:locus.ufv.br:123456789/21545
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetryClassical spin modelsSolitonsVorticesCurvatureHeisenberg modelWe study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry.Physics Letters A2018-08-30T17:06:08Z2018-08-30T17:06:08Z2013-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf03759601https://doi.org/10.1016/j.physleta.2013.03.028http://www.locus.ufv.br/handle/123456789/21545engv. 377, n. 18, p. 1308- 1316, august 2013Elsevier B.V.info:eu-repo/semantics/openAccessCarvalho-Santos, V.L.Apolonio, F.A.Oliveira-Neto, N.M.reponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T07:54:24Zoai:locus.ufv.br:123456789/21545Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T07:54:24LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry
title On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry
spellingShingle On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry
Carvalho-Santos, V.L.
Classical spin models
Solitons
Vortices
Curvature
Heisenberg model
title_short On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry
title_full On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry
title_fullStr On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry
title_full_unstemmed On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry
title_sort On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry
author Carvalho-Santos, V.L.
author_facet Carvalho-Santos, V.L.
Apolonio, F.A.
Oliveira-Neto, N.M.
author_role author
author2 Apolonio, F.A.
Oliveira-Neto, N.M.
author2_role author
author
dc.contributor.author.fl_str_mv Carvalho-Santos, V.L.
Apolonio, F.A.
Oliveira-Neto, N.M.
dc.subject.por.fl_str_mv Classical spin models
Solitons
Vortices
Curvature
Heisenberg model
topic Classical spin models
Solitons
Vortices
Curvature
Heisenberg model
description We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-01
2018-08-30T17:06:08Z
2018-08-30T17:06:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 03759601
https://doi.org/10.1016/j.physleta.2013.03.028
http://www.locus.ufv.br/handle/123456789/21545
identifier_str_mv 03759601
url https://doi.org/10.1016/j.physleta.2013.03.028
http://www.locus.ufv.br/handle/123456789/21545
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv v. 377, n. 18, p. 1308- 1316, august 2013
dc.rights.driver.fl_str_mv Elsevier B.V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B.V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv pdf
application/pdf
dc.publisher.none.fl_str_mv Physics Letters A
publisher.none.fl_str_mv Physics Letters A
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1817559970938355712