On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.physleta.2013.03.028 http://www.locus.ufv.br/handle/123456789/21545 |
Resumo: | We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry. |
id |
UFV_38d639c782486b8c54db273a9a6c4403 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/21545 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Carvalho-Santos, V.L.Apolonio, F.A.Oliveira-Neto, N.M.2018-08-30T17:06:08Z2018-08-30T17:06:08Z2013-08-0103759601https://doi.org/10.1016/j.physleta.2013.03.028http://www.locus.ufv.br/handle/123456789/21545We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry.engPhysics Letters Av. 377, n. 18, p. 1308- 1316, august 2013Elsevier B.V.info:eu-repo/semantics/openAccessClassical spin modelsSolitonsVorticesCurvatureHeisenberg modelOn geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf653773https://locus.ufv.br//bitstream/123456789/21545/1/artigo.pdf9d6c36daf6b1e9678ac915559000e3baMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21545/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5192https://locus.ufv.br//bitstream/123456789/21545/3/artigo.pdf.jpgb7f1c1f9657e562df396cc86a89f42fcMD53123456789/215452018-08-30 23:00:43.836oai:locus.ufv.br:123456789/21545Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-08-31T02:00:43LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry |
title |
On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry |
spellingShingle |
On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry Carvalho-Santos, V.L. Classical spin models Solitons Vortices Curvature Heisenberg model |
title_short |
On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry |
title_full |
On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry |
title_fullStr |
On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry |
title_full_unstemmed |
On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry |
title_sort |
On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry |
author |
Carvalho-Santos, V.L. |
author_facet |
Carvalho-Santos, V.L. Apolonio, F.A. Oliveira-Neto, N.M. |
author_role |
author |
author2 |
Apolonio, F.A. Oliveira-Neto, N.M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Carvalho-Santos, V.L. Apolonio, F.A. Oliveira-Neto, N.M. |
dc.subject.pt-BR.fl_str_mv |
Classical spin models Solitons Vortices Curvature Heisenberg model |
topic |
Classical spin models Solitons Vortices Curvature Heisenberg model |
description |
We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-08-01 |
dc.date.accessioned.fl_str_mv |
2018-08-30T17:06:08Z |
dc.date.available.fl_str_mv |
2018-08-30T17:06:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.physleta.2013.03.028 http://www.locus.ufv.br/handle/123456789/21545 |
dc.identifier.issn.none.fl_str_mv |
03759601 |
identifier_str_mv |
03759601 |
url |
https://doi.org/10.1016/j.physleta.2013.03.028 http://www.locus.ufv.br/handle/123456789/21545 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 377, n. 18, p. 1308- 1316, august 2013 |
dc.rights.driver.fl_str_mv |
Elsevier B.V. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Elsevier B.V. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Physics Letters A |
publisher.none.fl_str_mv |
Physics Letters A |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/21545/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/21545/2/license.txt https://locus.ufv.br//bitstream/123456789/21545/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
9d6c36daf6b1e9678ac915559000e3ba 8a4605be74aa9ea9d79846c1fba20a33 b7f1c1f9657e562df396cc86a89f42fc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213040767533056 |