Topological magnetic solitons on a paraboloidal shell

Detalhes bibliográficos
Autor(a) principal: Fonseca, Jakson M.
Data de Publicação: 2015
Outros Autores: Vilas-Boas, Priscila S. C., Elias, Ricardo G., Altbir, Dora, Carvalho-Santos, Vagson L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.physleta.2014.10.025
http://www.locus.ufv.br/handle/123456789/22230
Resumo: We study the influence of curvature on the exchange energy of skyrmions and vortices on a paraboloidal surface. It is shown that such structures appear as excitations of the Heisenberg model, presenting topological stability, unlike what happens on other simply-connected geometries such as pseudospheres. We also show that the skyrmion width depends on the geometrical parameters of the paraboloid. The presence of a magnetic field leads to the appearance of 2π-skyrmions, introducing a new characteristic length into the system. Regarding vortices, the geometrical parameters of the paraboloid play an important role in the exchange energy of this excitation.
id UFV_298c2ba454966752beefe509f722816e
oai_identifier_str oai:locus.ufv.br:123456789/22230
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Topological magnetic solitons on a paraboloidal shellClassical spin modelsSolitonsVorticesCurvatureHeisenberg modelWe study the influence of curvature on the exchange energy of skyrmions and vortices on a paraboloidal surface. It is shown that such structures appear as excitations of the Heisenberg model, presenting topological stability, unlike what happens on other simply-connected geometries such as pseudospheres. We also show that the skyrmion width depends on the geometrical parameters of the paraboloid. The presence of a magnetic field leads to the appearance of 2π-skyrmions, introducing a new characteristic length into the system. Regarding vortices, the geometrical parameters of the paraboloid play an important role in the exchange energy of this excitation.Physics Letters A2018-10-10T16:28:48Z2018-10-10T16:28:48Z2015-01-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf03759601https://doi.org/10.1016/j.physleta.2014.10.025http://www.locus.ufv.br/handle/123456789/22230engv. 379, n. 1– 2, p. 47- 53, jan. 2015Elsevier B.V.info:eu-repo/semantics/openAccessFonseca, Jakson M.Vilas-Boas, Priscila S. C.Elias, Ricardo G.Altbir, DoraCarvalho-Santos, Vagson L.reponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T07:28:35Zoai:locus.ufv.br:123456789/22230Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T07:28:35LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Topological magnetic solitons on a paraboloidal shell
title Topological magnetic solitons on a paraboloidal shell
spellingShingle Topological magnetic solitons on a paraboloidal shell
Fonseca, Jakson M.
Classical spin models
Solitons
Vortices
Curvature
Heisenberg model
title_short Topological magnetic solitons on a paraboloidal shell
title_full Topological magnetic solitons on a paraboloidal shell
title_fullStr Topological magnetic solitons on a paraboloidal shell
title_full_unstemmed Topological magnetic solitons on a paraboloidal shell
title_sort Topological magnetic solitons on a paraboloidal shell
author Fonseca, Jakson M.
author_facet Fonseca, Jakson M.
Vilas-Boas, Priscila S. C.
Elias, Ricardo G.
Altbir, Dora
Carvalho-Santos, Vagson L.
author_role author
author2 Vilas-Boas, Priscila S. C.
Elias, Ricardo G.
Altbir, Dora
Carvalho-Santos, Vagson L.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fonseca, Jakson M.
Vilas-Boas, Priscila S. C.
Elias, Ricardo G.
Altbir, Dora
Carvalho-Santos, Vagson L.
dc.subject.por.fl_str_mv Classical spin models
Solitons
Vortices
Curvature
Heisenberg model
topic Classical spin models
Solitons
Vortices
Curvature
Heisenberg model
description We study the influence of curvature on the exchange energy of skyrmions and vortices on a paraboloidal surface. It is shown that such structures appear as excitations of the Heisenberg model, presenting topological stability, unlike what happens on other simply-connected geometries such as pseudospheres. We also show that the skyrmion width depends on the geometrical parameters of the paraboloid. The presence of a magnetic field leads to the appearance of 2π-skyrmions, introducing a new characteristic length into the system. Regarding vortices, the geometrical parameters of the paraboloid play an important role in the exchange energy of this excitation.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-02
2018-10-10T16:28:48Z
2018-10-10T16:28:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 03759601
https://doi.org/10.1016/j.physleta.2014.10.025
http://www.locus.ufv.br/handle/123456789/22230
identifier_str_mv 03759601
url https://doi.org/10.1016/j.physleta.2014.10.025
http://www.locus.ufv.br/handle/123456789/22230
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv v. 379, n. 1– 2, p. 47- 53, jan. 2015
dc.rights.driver.fl_str_mv Elsevier B.V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B.V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv pdf
application/pdf
dc.publisher.none.fl_str_mv Physics Letters A
publisher.none.fl_str_mv Physics Letters A
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1817559933266165760